
GRAPHENE

Graphene is the thinnest known material: a sheet of carbon atoms arranged in

hexagonal cells only a single atom thick, and yet stronger than diamond.

Since it was experimentally isolated in 2004, it has been the object of

intense theoretical and experimental research. It has potentially significant

applications in nanotechnology, ‘beyond-silicon’ electronics, solid-state real-

ization of high-energy physics phenomena and as a prototype membrane that

could revolutionize soft-matter and two-dimensional physics.

In this book, leading graphene research theorist Mikhail I. Katsnelson

systematically presents the basic concepts of graphene physics. Topics

covered include Berry’s phase, topologically protected zero modes, Klein

tunnelling, vacuum reconstruction near supercritical charges and deformation-

induced gauge fields. The book also contains an introduction to the theory of

flexible membranes relevant to graphene physics and a detailed discussion of

electronic transport, optical properties, magnetism and spintronics. Standard

undergraduate-level knowledge of quantum and statistical physics and solid-

state theory is assumed.

This is an important textbook for graduate students in nanoscience and

nanotechnology, and an excellent introduction to the fast-growing field of

graphene science for physicists and materials-science researchers working in

related areas.

mikhail i. katsnelson is a Professor and Head of the Theory of

CondensedMatter groupat the Institute forMolecules andMaterials,Radboud

University, in the Netherlands. His fields of expertise are magnetism, electronic

structure and quantum many-body theory, and, after the discovery of gra-
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is the author of several books, including Quantum Solid State Physics (with
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Preface

I do not think that I need to explain, in the preface to a book that is all about

graphene, what graphene is and why it is important. After the Nobel Prize for

physics in 2010, everybody should have heard something about graphene.

I do need, however, to explain why I wrote this book and what is special

about it.

I hope it will not be considered a disclosure of insider information if I tell

you that Andre Geim is a bit sarcastic (especially with theoreticians). Every

time I mentioned that I was somewhat busy writing a book on graphene, he

always replied ‘Go to amazon.com and search for “graphene”.’ Indeed, there

are many books on graphene, many more reviews and infinitely many collec-

tions of papers and conference proceedings (well, not really infinitely many . . .

in the main text I will use the mathematical terminology in a more rigorous

way, I promise). Why, nevertheless, has this book been written and why may

it be worthwhile for you to read it?

Of course, this is a personal view of the field. I do love it, and it has

been my main scientific activity during the last seven years, from 2004 when

graphene started to be the subject of intensive and systematic investiga-

tions. Luckily, I was involved in this development almost from the very

beginning. It was a fantastic experience to watch a whole new world coming

into being and to participate in the development of a new language for this

new world. I would like to try to share this experience with the readers

of this book.

The beauty of graphene is that it demonstrates in the most straightforward

way many basic concepts of fundamental physics, from Berry’s phase and

topologically protected zero modes to strongly interacting fluctuations and

scaling laws for two-dimensional systems. It is also a real testbed for relativ-

istic quantum phenomena such as Klein tunnelling or vacuum reconstruction,

‘CERN on one’s desk’. I was not able to find a book focused on these aspects
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of graphene, namely on its role in our general physical view of the world.

I have tried to write such a book myself. The price is that I have sacrificed all

practical aspects of graphene science and technology, so you will not find

a single word here about the ways in which graphene is produced, and there

is hardly anything about its potential applications. Well, there is a lot of

literature on these subjects. Also, I have said very little about the chemistry of

graphene, which is an extremely interesting subject in itself. It certainly

deserves a separate book, and I am not chemist enough to write it.

The field is very young, and it is not easy to know what will not be out of

date in just a couple of years. My choice is clear from the contents of this

book. I do believe that it represents the core of graphene physics which will

not be essentially modified in the near future. I do not mean that this is

the most interesting part; moreover, I am sure that there will be impressive

progress, at least, in two more directions that are hardly mentioned in the

book: in the many-body physics of graphene and in our understanding of

electron transport near the neutrality point, where the semiclassical Boltzmann

equation is obviously inapplicable. I think, however, that it is a bit too early

to cover these subjects in a book, since too many things are not yet clear.

Also, the mathematical tools required are not as easy as those used in this

book, and I think it is unfair to force the reader to learn something technically

quite complicated without a deep internal confidence that the results are

relevant for the real graphene.

The way the book has been written is how I would teach a course with the

title ‘Introduction to the theory of graphene’. I have tried to make a presen-

tation that is reasonably independent of other textbooks. I have included

therefore some general issues such as Berry’s phase, the statistical mechanics

of fluctuating membranes, a quick overview of itinerant-electron magnetism,

a brief discussion of basic nonequilibrium statistical mechanics, etc. The aims

were, first, to show the physics of graphene in a more general context and,

second, to make the reading easier.

It is very difficult to give an overview of a field that has developed so

quickly as has that of graphene. So many papers appear, literally every day,

that keeping permanently up to date would be an enterprise in the style of

ancient myths, e.g., those of Sisyphus, the Danaı̈des and some of the labours

of Hercules. I apologise therefore for the lack of many important references.

I tried to do my best.

I cannot even list all of the scientific reviews on the basic physics of

graphene which are available now (let alone reviews of applications and of

popular literature). Let me mention at least several of them, in chronological

order: Katsnelson (2007a), Geim & Novoselov (2007), Beenakker (2008),
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Castro Neto et al. (2009), Geim (2009), Abergel et al. (2010), Vozmediano,

Katsnelson & Guinea (2010), Peres (2010), Das Sarma et al. (2011), Goerbig

(2011) and Kotov et al. (2011). There you can find different, complementary

views on the field (with the possible exception of the first one). Of course, the

Nobel lectures by Geim (2011) and Novoselov (2011) are especially strongly

recommended. In particular, the lecture by Andre Geim contains a brilliant

presentation of the prehistory and history of graphene research, so I do not

need to discuss these, unavoidably controversial, issues in my book.

I am very grateful to Andre Geim and Kostya Novoselov, who involved

me in this wonderful field before it became fashionable (otherwise I would

probably never have dared to join such a brilliant company). I am especially

grateful to Andre for regular and long phone conversations; when you have

to discuss a theory using just words, without formulas and diagrams, and

cannot even make faces, after several years it does improve your understand-

ing of theoretical physics.

It is impossible to thank all my other collaborators in the field of graphene

in a short preface, as well as other colleagues with whom I have had fruitful

discussions. I have to thank, first of all, Annalisa Fasolino, Paco Guinea,

Sasha Lichtenstein and Tim Wehling for especially close and intensive collab-

oration. I am very grateful to the former and current members of our group

in Nijmegen working on graphene: Misha Akhukov, Danil Boukhvalov, Jan

Los, Koen Reijnders, Rafa Roldán, Timur Tudorovskiy, Shengjun Yuan and

Kostya Zakharchenko, and to my other collaborators and coauthors, espe-

cially Mark Auslender, Eduardo Castro, Hans De Raedt, Olle Eriksson, Misha

Fogler, Jos Giesbers, Leonya Levitov, Tony Low, Jan Kees Maan, Hector

Ochoa,Marco Polini, Sasha Rudenko,Mark van Schilfgaarde, Andrey Shytov,

Alyosha Tsvelik, Maria Vozmediano, Oleg Yazyev and Uli Zeitler.

I am grateful to the Faculty of Science of Radboud University and the

Institute for Molecules andMaterials for making available to me the time and

resources for research and writing.

I am very grateful to Marina Katsnelson and Timur Tudorovskiy for their

invaluable help with the preparation of the manuscript and for their critical

reading. I am grateful to many colleagues for permission to reproduce figures

from their papers and for providing some of the original figures used in the

book. I am especially grateful to Annalisa Fasolino for the wonderful picture

which is used for the cover.

Of course, the role of my wife Marina in this book amounts to much more

than her help with the manuscript. You cannot succeed in such a long and

demanding task without support from your family. I am very grateful for her

understanding and full support.
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The book is dedicated to the memory of two people who were very close to

me, my teacher Serghey Vonsovsky (1910 1998) and my friend Sasha Trefilov

(1951 2003). I worked with them for about twenty years, and they had a

decisive influence on the formation of my scientific taste and my scientific

style. I thought many times during these last seven years how sad it is that

I cannot discuss with them some new interesting physics about graphene.

Also, in a more technical sense, I would not have been able to write this book

without the experience of writing my previous books, Vonsovsky & Katsnelson

(1989) and Katsnelson & Trefilov (2002).
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1

The electronic structure of ideal graphene

1.1 The carbon atom

Carbon is the sixth element in the Periodic Table. It has two stable isotopes,
12C (98.9% of natural carbon) with nuclear spin I¼ 0 and, thus, nuclear

magnetic moment mn¼ 0, and 13C (1.1% of natural carbon) with I¼ 1
2
and

mn¼ 0.7024mN (mN is the nuclear magneton), see Radzig & Smirnov (1985).

Like most of the chemical elements, it originates from nucleosynthesis in stars

(for a review, see the Nobel lecture by Fowler (1984)). Actually, it plays a

crucial role in the chemical evolution of the Universe.

The stars of the first generation produced energy only by proton proton

chain reaction, which results in the synthesis of one a-particle (nucleus 4He)

from four protons, p. Further nuclear fusion reactions might lead to the

formation of either of the isotopes 5He and 5Li (pþ a collisions) or of 8Be

(aþ a collisions); however, all these nuclei are very unstable. As was first

realized by F. Hoyle, the chemical evolution does not stop at helium only due

to a lucky coincidence the nucleus 12C has an energy level close enough to

the energy of three a-particles, thus, the triple fusion reaction 3a! 12C, being

resonant, has a high enough probability. This opens up a way to overcome

the mass gap (the absence of stable isotopes with masses 5 and 8) and provides

the prerequisites for nucleosynthesis up to the most stable nucleus, 56Fe;

heavier elements are synthesized in supernova explosions.

The reaction 3a! 12C is the main source of energy for red giants. Carbon

plays also an essential role in nuclear reactions in stars of the main sequence

(heavier than the Sun) via the so-called CNO cycle.

The carbon atom has six electrons, two of them forming a closed 1s2 shell

(helium shell) and four filling 2s and 2p states. The ground-state atomic

configuration is 2s2 2p2, with the total spin S¼ 1, total orbital moment L¼ 1

and total angular moment J¼ 0 (the ground-state multiplet 3P0). The first
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excited state, with a J¼ 1, 3P1 multiplet, has the energy 16.4 cm 1� 2 meV

(Radzig & Smirnov, 1985), which gives an estimate of the strength of the

spin orbit coupling in the carbon atom. The lowest-energy state, with configur-

ation 2s1 2p3, has the energy 33735.2 cm 1� 4.2 eV (Radzig & Smirnov, 1985),

so this is the promotion energy for exciting a 2s electron into a 2p state. At first

sight, this wouldmean that carbon should always be divalent, due to there being

two2p electronswhile the 2s electrons are chemically quite inert. This conclusion

is, however, wrong. Normally, carbon is tetravalent, due to a formation of

hybridized sp electron states, according to the concept of ‘resonance’ developed

by L. Pauling (Pauling, 1960; Eyring, Walter & Kimball, 1946).

When atoms form molecules or solids the total energy decreases due to

overlap of the electron wave functions at various sites and formation of

molecular orbitals (in molecules), or energy bands (in solids); for a compact

introduction to chemical bonding in solids, see Section 1.7 in Vonsovsky &

Katsnelson (1989). This energy gain can be sufficient to provide the energy

which is necessary to promote a 2s electron into a 2p state in the carbon atom.

In order to maximize the energy gained during the formation of a covalent

bond, the overlap of the wave functions with those at neighbouring atoms

should also be maximal. This is possible if the neighbouring atoms are situated

in such directions from the central atoms that the atomic wave functions

take on maximum values. The larger these values are the stronger the bond is.

There are four basis functions corresponding to the spherical harmonics

Y0;0ðW;jÞ ¼
1

4p
p ;

Y1;0ðW;jÞ ¼ i
3

4p

r

cos W;

Y1;�1ðW;jÞ ¼ �i
3

8p

r

sinW expð�ijÞ;

ð1:1Þ

where W and j are polar angles. Rather than take the functions Y1,m(W, j) to

be the basis functions, it is more convenient to choose their orthonormalized

linear combinations of the form

i

2
p ½Y1;1ðW;jÞ Y1; 1ðW;jÞ� ¼

3

4p

r

sinW cosj;

i

2
p ½Y1;1ðW;jÞ þ Y1; 1ðW;jÞ� ¼

3

4p

r

sinW sinj;

iY1;0ðW;jÞ ¼
3

4p

r

cosW;

ð1:2Þ
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which are transformed under rotations as the Cartesian coordinates x, y and z,

respectively. Recall that the radial components of the s and p functions in

the simplest approximation are equal in magnitude and may be omitted,

together with the constant factor 1= 4p
p

, which is not important here. Then

the angular dependence of the four basis functions which we will introduce in

lieu of Yl,m(W, j) can be represented as

jsi ¼ 1;

jxi ¼ 3
p

sinW cosj; jyi ¼ 3
p

sin W sinj; jzi ¼ 3
p

cosW:
ð1:3Þ

We now seek linear combinations of the functions (1.3) that will ensure

maximum overlap with the functions of the adjacent atoms. This requires

that the value of a¼max
W;j

c be a maximum. With the normalization that

we have chosen, a=1 for the s states and a¼ 3
p

for the p functions of jxi,
jyi and jzi. We then represent the function jci as

jci ¼ ajsi þ b1jxi þ b2jyi þ b3jzi; ð1:4Þ

where a and bi are real-valued coefficients that satisfy the normalization

condition

a2 þ b21 þ b22 þ b23 ¼ 1: ð1:5Þ
The function jci, then, is normalized in the same way as (1.3). This follows

from their mutual orthogonality,
ð

dojcðW;jÞj2 � hcjci ¼ a2hsjsi þ b21hxjxi þ b22hyjyi þ b23hzjzi ¼ 4p;

with do being an element of solid angle. For the time being, the orientation of

the axes in our case is arbitrary.

Let us assume that in one of the functions c, for which a is a maximum,

this maximum value is reached in the direction along the diagonal of the cube

(1, 1, 1), with the carbon atom at its centre and with the coordinate axes

parallel to its edges (Fig. 1.1). Then b1¼ b2¼ b3¼ b. The (1, 1, 1) direction is

given by angles W and j such that

sinj ¼ cosj ¼ 1

2
p ; cos W ¼ 1

3
p ; sin W ¼ 2

3

r

;

so that

jxi ¼ jyi ¼ jzi ¼ 1:

In addition,

a ¼ aþ 3b ¼ aþ 3ð1 a2Þ
q

; ð1:6Þ

1.1 The carbon atom 3

              

       



where we have used the conditions (1.3). The maximum of a as a function of a

is reached for a¼ 1
2
and is equal to 2. The quantity b in this case is equal to 1

2
.

Thus the first orbital with maximum values along the coordinate axes that we

have chosen is of the form

j1i ¼ 1

2
ðjsi þ jxi þ jyi þ jziÞ: ð1:7Þ

It can be readily shown that the functions

j2i ¼ 1

2
ðjsi þ jxi jyi jziÞ;

j3i ¼ 1

2
ðjsi jxi þ jyi jziÞ;

j4i ¼ 1

2
ðjsi jxi jyi þ jziÞ

ð1:8Þ

correspond to the same value a=2. The functions jii (i=1, 2, 3, 4) are

mutually orthogonal. They take on their maximum values along the (1, 1, 1),

ð1; 1; 1Þ, ð1; 1; 1Þ and ð1; 1; 1Þ axes, i.e., along the axes of the tetrahedron, and,
therefore, the maximum gain in chemical-bonding energy corresponds to the

tetrahedral environment of the carbon atom. In spite of being qualitative, the

treatment that we have performed above nevertheless explains the character

of the crystal structure of the Periodic Table group-IV elements (diamond-

type lattice, Fig. 1.2) as well as the shape of the methane molecule, which is

very close to being tetrahedral.

Z

Y

X

(–1,1,–1)

(1,–1,–1)

(–1,–1,1)

(1,1,1)

Fig. 1.1. Directions of sp3 chemical bonds of the carbon atom.
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The wave functions (1.7) and (1.8) correspond to a so-called sp3 state of the

carbon atom, for which all chemical bonds are equivalent. Another option is

that three sp electrons form hybrid covalent bonds whereas one p electron has

a special destiny, being distributed throughout the whole molecule (benzene)

or the whole crystal (graphite or graphene). If one repeats the consideration

above for a smaller basis including only functions jsi, jxi and jyi one finds the
following functions corresponding to the maximum overlap (Eyring, Walter &

Kimball, 1946):

j1i ¼ 1

3
p ðjsi þ 2

p
jxiÞ;

j2i ¼ 1

3
p jsi 1

6
p jxi þ 1

2
p jyi;

j3i ¼ 1

3
p jsi 1

6
p jxi 1

2
p jyi:

ð1:9Þ

The corresponding orbits have maxima in the xy-plane separated by angles of

120�. There are called s bonds. The last electron with the p orbital perpendicular

to the plane (jzi function) forms a p bond. This state (sp2) is therefore character-

ized by threefold coordination of carbon atoms, in contrast with fourfold

coordination for the sp3 state. This is the case of graphite (Fig. 1.3).

1.2 p States in graphene

Graphene has a honeycomb crystal lattice as shown in Fig. 1.4(a). The Bravais

lattice is triangular, with the lattice vectors

Fig. 1.2. Chemical bonds in the diamond structure.
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~a1 ¼
a

2
ð3; 3
p
Þ; ~a2 ¼

a

2
ð3; 3

p
Þ; ð1:10Þ

where a� 1.42 Å is the nearest-neighbour distance. It corresponds to a so-called

conjugated carbon carbon bond (like in benzene) intermediate between a single

bond and a double bond, with lengths r1� 1.54 Å and r2� 1.31 Å, respectively.

The honeycomb lattice contains two atoms per elementary cell. They belong

to two sublattices, A and B, each atom from sublattice A being surrounded by

three atoms from sublattice B, and vice versa (a bipartite lattice). The nearest-

neighbour vectors are

~d1 ¼
a

2
1; 3
p� �

; ~d2 ¼
a

2
1; 3
p� �

; ~d3 ¼ að 1; 0Þ: ð1:11Þ

Fig. 1.3. The structure of graphite. Carbon atoms belonging to two different
sublattices are shown as black and light grey.

A

(a)

B

a1

a2

ky b1

b2

K�

MΓ

K

Kx

(b)

Fig. 1.4. (a) A honeycomb lattice, subblattices A and B are shown as black
and grey. (b) Reciprocal lattice vectors and some special points in the
Brillouin zone.
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The reciprocal lattice is also triangular, with the lattice vectors

~b1 ¼
2p

3a
1; 3
p� �

; ~b2 ¼
2p

3a
1; 3
p� �

: ð1:12Þ

The Brillouin zone is presented in Fig. 1.4(b). Special high-symmetry points

K, K0 and M are shown there, with the wave vectors

~K0 ¼ 2p

3a
;

2p

3 3
p

a

� �

; ~K ¼ 2p

3a
;

2p

3 3
p

a

� �

; ~M ¼ 2p

3a
; 0

� �

: ð1:13Þ

The electronic structures of graphene and graphite are discussed in detail in

Bassani &Pastori Parravicini (1975). In Fig. 1.5we show a recent computational

result for graphene. The sp2 hybridized states (s states) form occupied and

empty bands with a huge gap, whereas p states form a single band, with a

conical self-crossing point inK (the same point, by symmetry, exists also inK0).
This conical point is a characteristic of the peculiar electronic structure of

graphene and the origin of its unique electronic properties. It was first obtained

by Wallace (1947) in the framework of a simple tight-binding model. Further

this model was developed byMcClure (1957) and Slonczewski &Weiss (1958).

Let us start, following Wallace (1947), with the nearest-neighbour

approximation for the p states only, with the hopping parameter t. The

basis of electron states contains two p states belonging to the atoms from

sublattices A and B. In the nearest-neighbour approximation, there are no

hopping processes within the sublattices; hopping occurs only between them.

The tight-binding Hamiltonian is therefore described by the 2	 2 matrix

Γ

–20

–15

–10

–5
E

n
e
rg

y
 (

e
V

)

0

5

K M Γ

Fig. 1.5. The band structure of graphene (reproduced with permission from
Boukhvalov, Katsnelson & Lichtenstein, 2008).
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Ĥð~kÞ ¼ 0 tSð~kÞ
tS
ð~kÞ 0

� �

; ð1:14Þ

where ~k is the wave vector and

Sð~kÞ ¼
X

~d

ei
~k~d ¼ 2 exp

ikxa

2

� �

cos
kya 3
p

2

 !

þ expð ikxaÞ: ð1:15Þ

The energy is, therefore,

Eð~kÞ ¼ �tjSð~kÞj ¼ �t 3þ fð~kÞ
q

; ð1:16Þ

where

fð~kÞ ¼ 2 cos 3
p

kya
� �

þ 4 cos
3
p

2
kya

 !

cos
3

2
kxa

� �

: ð1:17Þ

One can see immediately that Sð~KÞ ¼ Sð~K0Þ ¼ 0, which means band crossing.

On expanding the Hamiltonian near these points one finds

ĤK0ð~qÞ �
3at

2

0 aðqx þ iqyÞ
a
ðqx iqyÞ 0

� �

;

ĤKð~qÞ �
3at

2

0 a
ðqx iqyÞ
aðqx þ iqyÞ 0

� �

;

ð1:18Þ

where a¼ e5ip/6, with ~q ¼ ~k ~K and ~k ~K0, respectively. The phase 5p/6 can

be excluded by a unitary transformation of the basis functions. Thus, the

effective Hamiltonians near the points K and K0 take the form

ĤK;K0ð~qÞ ¼ hv
0 qx � iqy

qx � iqy 0

� �

; ð1:19Þ

where

v ¼ 3ajtj
2

ð1:20Þ

is the electron velocity at the conical points. The possible negative sign of t

can be excluded by an additional phase shift by p.

On taking into account the next-nearest-neighbour hopping t0, one finds,

instead of Eq. (1.16),

Eð~kÞ ¼ �tjSð~kÞj þ t0fð~kÞ ¼ �t 3þ fð~kÞ
q

þ t0fð~kÞ: ð1:21Þ

The second term breaks the electron hole symmetry, shifting the conical

point from E¼ 0 to E¼ 3t0, but it does not change the behaviour of
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the Hamiltonian near the conical points. Actually, this behaviour is

symmetry-protected (and even topologically protected), as we will see in the

next section.

The points K and K0 differ by the reciprocal lattice vector ~b ¼ ~b1 ~b2, so

the point K0 is equivalent to K. To show this explicitly, it is convenient

sometimes to use a larger unit cell in the reciprocal space, with six conical

points. The spectrum (1.16) in this representation is shown in Fig. 1.6.

The parameters of the effective tight-binding model can be found by fitting

the results of first-principles electronic-structure calculations. According to

Reich et al. (2002), the first three hopping parameters are t¼ 2.97 eV,

t0¼ 0.073 eV and t00¼ 0.33 eV. The smallness of t0 means that the electron

hole symmetry of the spectrum is very accurate not only in the vicinity of the

conical points but also throughout the whole Brillouin zone.

There are saddle points of the electron energy spectrum at M (see Figs. 1.5

and 1.6), with Van Hove singularities in the electron density of states, dN(E)

/ lnjE EMj (Bassani & Pastori Parravicini, 1975). The positions of these

singularities are

EM ¼ tþ t0 3t00 � 2:05 eV

and

EMþ ¼ tþ t0 þ 3t00 � 1:91 eV:

K2 K1

Fig. 1.6. The electron energy spectrum of graphene in the nearest-neighbour
approximation.
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1.3 Massless Dirac fermions in graphene

Undoped graphene has a Fermi energy coinciding with the energy at the

conical points, with a completely filled valence band, an empty conduction

band and no band gap in between. This means that, from the point of view of

a general band theory, graphene is an example of a gapless semiconductor

(Tsidilkovskii, 1996). Three-dimensional crystals, such as HgTe and a-Sn

(grey tin) are known to be gapless semiconductors. What makes graphene

unique is not the gapless state itself but the very special, chiral nature of the

electron states, as well as the high degree of electron hole symmetry.

For any realistic doping, the Fermi energy is close to the energy at the

conical point, jEFj� jtj. To construct an effective model describing electron

and hole states in this regime one needs to expand the effective Hamiltonian

near one of the special points K and K0 and then make the replacements

qx ! i
q

qx
; qy ! i

q

qy
;

which corresponds to the effective mass approximation, or ~k�~p perturbation

theory (Tsidilkovskii, 1982; Vonsovsky & Katsnelson, 1989). From Eq. (1.19),

one has

ĤK ¼ ihv~sr; ð1:22Þ

ĤK0 ¼ ĤT
K; ð1:23Þ

where

s0 ¼
1 0

0 1

� �

; sx ¼
0 1

1 0

� �

; sy ¼
0 i

i 0

� �

; sz ¼
1 0

0 1

� �

ð1:24Þ

are Pauli matrices (only x- and y-components enter Eq. (1.22)) and T denotes

a transposed matrix. A complete low-energy Hamiltonian consists of 4	 4

matrices taking into account both two sublattices and two conical points

(in terms of semiconductor physics, two valleys).

In the basis

C ¼
cKA

cKB

cK0A

cK0B

0

B

B

@

1

C

C

A

; ð1:25Þ

where cKA means a component of the electron wave function corresponding

to valley K and sublattice A, the Hamiltonian is a 2	 2 block supermatrix,

Ĥ ¼ ĤK 0

0 ĤK0

� �

: ð1:26Þ
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Sometimes it is more convenient to choose the basis as

C ¼
cKA

cKB

cK0B

cK0A

0

B

B

@

1

C

C

A

ð1:27Þ

(Aleiner & Efetov, 2006; Akhmerov & Beenakker, 2008; Basko, 2008), then

the Hamiltonian (1.26) takes the most symmetric form

Ĥ ¼ ihvt0 
~s r; ð1:28Þ

where t0 is the unit matrix in valley indices (we will use different notations for

the same Pauli matrices acting on different indices, namely,~s in the sublattice

space and~t in the valley space).

For the case of an ideal graphene the valleys are decoupled. If we add some

inhomogeneities (external electric and magnetic fields, disorder, etc.) that are

smooth at the atomic scale the valleys remain independent, since the Fourier

component of external potential with the Umklapp wave vector ~b is very

small, and intervalley scattering is improbable. We will deal mainly with this

case. However, one should keep in mind that any sharp (atomic-scale) inho-

mogeneities, e.g., boundaries, will mix the states from different valleys, see

Chapter 5.

The Hamiltonian (1.22) is a two-dimensional analogue of the Dirac

Hamiltonian for massless fermions (Bjorken & Drell, 1964; Berestetskii,

Lifshitz & Pitaevskii, 1971; Davydov, 1976). Instead of the velocity of light c,

there is a parameter v� 106 ms 1� c/300 (we will discuss later, in Chapter 2,

how this parameter has been found experimentally).

A formal similarity between ultrarelativistic particles (with energy much

larger than the rest energy mc2, such that one can consider the particles as

massless) and electrons in graphene makes graphene a playground on which

to study various quantum relativistic effects ‘CERN on one’s desk’. These

relations between the physics of graphene and relativistic quantum mechanics

will be considered in the next several chapters.

The internal degree of freedom, which is just spin for ‘true’ Dirac fermions,

is the sublattice index in the case of graphene. The Dirac ‘spinors’ consist here

of the components describing the distribution of electrons in sublattices

A and B. We will call this quantum number pseudospin, so that pseudospin

‘up’ means sublattice A and pseudospin ‘down’ means sublattice B. Apart

from the pseudospin, there are two more internal degrees of freedom, namely

the valley label (sometimes called isospin) and real spin, so, the most general

low-energy Hamiltonian of electrons in graphene is an 8	 8 matrix.
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Spin orbit coupling leads to a mixture of pseudospin and real spin and to

the gap opening (Kane & Mele, 2005b). However, the value of the gap is

supposed to be very small, of the order of 10 2 K for pristine graphene

(Huertas-Hernando, Guinea & Brataas, 2006). The reason is not only the

lightness of carbon atoms but also the orientation of orbital moments for p

states perpendicular to the graphene plane. Defects can significantly enhance

the spin orbit coupling (Castro Neto & Guinea, 2009) and the corresponding

effects are relevant, e.g., for spin relaxation in graphene (Huertas-Hernando,

Guinea & Brataas, 2009), but the influence of spin orbit coupling on the

electronic structure is negligible. Henceforth we will neglect these effects, until

the very end of the book (see Section 12.4).

For the case of ‘true’ Dirac fermions in three-dimensional space, the

Hamiltonian is a 4	 4 matrix, due to two projections of spins and two

values of a charge degree of freedom particle versus antiparticle. For the

two-dimensional case the latter is not independent of the former. Electrons

and holes are just linear combinations of the states from the sublattices A and

B. The 2	 2 matrix hv~s~k (the result of action of the Hamiltonian (1.22) on a

plane wave with wave vector ~k) is diagonalized by the unitary transformation

Û~k ¼
1

2
p ð1þ i~m~k

~sÞ; ð1:29Þ

where ~m~k ¼ ðcosf~k; sinf~kÞ and f~k is the polar angle of the vector
~kð~m~k?~kÞ.

The eigenfunctions

c
ðKÞ
e;h ð~kÞ ¼

1

2
p exp if~k=2

� �

�exp if~k=2
� �

� �

ð1:30Þ

correspond to electron (e) and hole (h) states, with the energies

Ee;h ¼ �hvk: ð1:31Þ

For the valley K0 the corresponding states (in the basis (1.25)) are

c
ðK0Þ
e;h ð~kÞ ¼

1

2
p exp if~k=2

� �

�exp if~k=2
� �

� �

: ð1:32Þ

For the electron (hole) states, by definition,

ð~k~sÞ
k

ce;h ¼ �ce;h: ð1:33Þ

This means that the electrons (holes) in graphene have a definite pseudo-

spin direction, namely parallel (antiparallel) to the direction of motion.

Thus, these states are chiral (helical ), as should be the case for massless
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Dirac fermions (Bjorken & Drell, 1964). This is of crucial importance for

‘relativistic’ effects, such as Klein tunnelling, which will be considered in

Chapter 4.

The Dirac model for electrons in graphene results from the lowest-order

expansion of the tight-binding Hamiltonian (1.14) near the conical points.

If one takes into account the next, quadratic, term, one finds, instead of the

Hamiltonian (1.28) (in the basis (1.27)),

Ĥ ¼ hvt0 
~s~kþ mtz 
 2sykxky sx kx
2 ky

2
� �	 


; ð1:34Þ

where m¼ 3a2t/8. The additional term in Eq. (1.34) corresponds to a trigonal

warping (Ando, Nakanishi & Saito, 1988;McCann et al., 2006). Diagonalization

of the Hamiltonian (1.34) gives the spectrum Ee;hð~kÞ ¼ �eð~kÞ, where

e2ð~kÞ ¼ h2v2k2 � 2hvmk3 cos 3f~k

� �

þ m2k4; ð1:35Þ

with the signs � corresponding to valleys K and K0. The dispersion law is no

longer isotropic but has threefold symmetry. Importantly, eð~kÞ 6¼ eð ~kÞ,
which means that the trigonal warping destroys an effective time-reversal

symmetry for a given valley (the property Eð~kÞ ¼ Eð ~kÞ follows from the

time-reversal symmetry (Vonsovsky & Katsnelson, 1989)). Of course, for the

electron spectrum as a whole, taking into account the two valleys, the sym-

metry holds:

eð~kþ ~KÞ ¼ eð ~k ~KÞ: ð1:36Þ
At the end of this section we show, following Mañes, Guinea & Vozmediano

(2007), that the gapless state with the conical point is symmetry-protected.

The proof is very simple and based on consideration of two symmetry

operations: time reversal T and inversion I. We will use the basis (1.25) and

the extended-Brillouin-zone representation of Fig. 1.6 assuming ~K0 ¼ ~K.

The time reversal changes the sign of the wave vector, or valley,

TcKðA;BÞ ¼ c
KðA;BÞ ¼ cK0ðA;BÞ; ð1:37Þ

whereas the inversion exchanges also the sublattices:

IcKA ¼ cK0B; IcKB ¼ cK0A: ð1:38Þ

Invariance under these symmetries imposes the following conditions for ĤK

and ĤK0 :

T : HK ¼ H
K0 ¼ HK; ð1:39Þ

I : HK ¼ sxHK0sx ¼ HK: ð1:40Þ
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Indeed,

sx
a11 a12
a21 a22

� �

sx ¼ a22 a21
a12 a11

� �

; ð1:41Þ

so the operation in (1.40) does exchange the A and B sublattices.

The conditions (1.39) and (1.40) establish relations between the Hamiltonians

for the different valleys. If we use both these symmetry transformations we

impose restrictions on HK and HK0 separately, e.g.,

TI : HK ¼ sxH


Ksx ¼ HK: ð1:42Þ

If we write the Hamiltonian as

HK ¼
X

i

aisi

one can see immediately that az=0, which means the absence of the mass

term. Thus, a perturbation that is invariant under T and I can, in principle,

shift the conical point (we will see in Chapter 10 that it can indeed be done, by

deformations), but cannot open the gap: (HK)11¼ (HK)22 and the bands split

by �jH12j.
If the sublattices are no longer equivalent, then there is no inversion

symmetry, the mass term naturally appears and the gap opens. This is, for

example, the case of graphene on top of hexagonal boron nitride, h-BN

(Giovannetti et al., 2007; Sachs et al., 2011).

1.4 The electronic structure of bilayer graphene

By exfoliation of graphene one can obtain several layers of carbon atoms.

Bilayer graphene (Novoselov et al., 2006) is especially interesting. Its electronic

structure can be understood in the framework of a tight-binding model

(McCann & Falko, 2006; McCann, Abergel & Falko, 2007).

The crystal structure of bilayer graphene is shown in Fig. 1.7. Like in

graphite, the second carbon layer is rotated by 60� with respect to the first

one. In graphite, such a configuration is repeated, which is called Bernal

stacking. The sublattices A of the two layers lie exactly on top of one another,

with a significant hopping parameter g1 between them, whereas there are no

essential hopping processes between the sublattices B of the two layers. The

parameter g1 ¼ t? is usually taken as 0.4 eV, from data on the electronic

structure of graphite (Brandt, Chudinov & Ponomarev, 1988; Dresselhaus &

Dresselhaus, 2002), which is an order of magnitude smaller than the nearest-

neighbour in-plane hopping parameter g0¼ t. The simplest model which takes

into account only these processes is described by the Hamiltonian
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Ĥð~kÞ ¼

0 tSð~kÞ t? 0

tS
ð~kÞ 0 0 0

t? 0 0 tS
ð~kÞ
0 0 tSð~kÞ 0

0

B

B

B

@

1

C

C

C

A

ð1:43Þ

with Sð~kÞ from Eq. (1.15). The basis states are ordered in the sequence first

layer, sublattice A; first layer, sublattice B; second layer, sublattice A; second

layer, sublattice B.

The matrix (1.43) can be easily diagonalized, with four eigenvalues

Eið~kÞ ¼ �
1

2
t? �

1

4
t2? þ t2jSð~kÞj2

r

ð1:44Þ

with two independent � signs. The spectrum is shown in Fig. 1.8(a). Two

bands touch one another at the points K and K0. Near these points

E1;2ð~kÞ � �
t2jSð~kÞj2

t?
� � h2q2

2m

; ð1:45Þ

where the effective mass ism
 ¼ jt?j=ð2v2Þ � 0:054me, whereme is the mass of

a free electron (McCann, Abergel & Falko, 2007). Note that the recent

experimental data give a value that is smaller by a factor of two:

m
 � 0:028me (Mayorov et al., 2011). So, in contrast with the case of a single

layer, bilayer graphene turns out to be a gapless semiconductor with parabolic

band touching. Two other branches E3;4ð~kÞ are separated by a gap 2jt?j and
are irrelevant for low-energy physics.

If one neglects intervalley scattering and replaces hqx and hqy by operators

p̂x ¼ ih q=qx and p̂y ¼ ih q=qy as usual, one can construct the effective

g
4

g
1

g
3

g
0

(a) (b) K�
M

K

Γ

Fig. 1.7. (a) The crystal structure of bilayer graphene; hopping parameters
are shown. (b) Special points in the Brillouin zone for the bilayer graphene.
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Hamiltonian; for single-layer graphene, this is the Dirac Hamiltonian (1.22).

For the case of bilayer graphene, instead, we have (Novoselov et al., 2006;

McCann & Falko, 2006)

ĤK ¼
1

2m


0 p̂x ip̂y

� �2

p̂x þ ip̂y

� �2

0

0

B

@

1

C

A
: ð1:46Þ

This is a new type of quantum-mechanical Hamiltonian that is different both

from nonrelativistic (Schrödinger) and from relativistic (Dirac) cases. The

eigenstates of this Hamiltonian have very special chiral properties (Novoselov

et al., 2006), resulting in a special Landau quantization, special scattering,

etc., as will be discussed later. Electron and hole states corresponding to the

energies

Ee;h ¼ �
h2k2

2m

ð1:47Þ

(cf. Eq. (1.31)) have a form similar to Eq. (1.30), with the replacement

f~k ! 2f~k :

c
ðKÞ
e;h ð~kÞ ¼

1

2
p e if~k

�eif~k

� �

: ð1:48Þ

These are characterized by a helicity property similar to Eq. (1.33):

~k~s
� �2

k2
ce;h ¼ �ce;h: ð1:49Þ

(a)
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)

Fig. 1.8. (a) The electronic structure of bilayer graphene within the frame-
work of the simplest model (nearest-neighbour hopping processes only).
(b) The same, for the case of biased bilayer graphene (a voltage is applied
perpendicular to the layers).
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By applying a voltage V perpendicular to the carbon planes one can open

a gap in the energy spectrum (McCann & Falko, 2006; Castro et al., 2007,

2010a). In this case, instead of the Hamiltonian (1.43), one has

Hð~kÞ ¼

V=2 tSð~kÞ t? 0

tS
ð~kÞ V=2 0 0

t? 0 V=2 tS
ð~kÞ
0 0 tSð~kÞ V=2

0

B

B

B

B

@

1

C

C

C

C

A

ð1:50Þ

and, instead of the eigenvalues (1.44), we obtain

E2
i ð~kÞ ¼ t2jSð~kÞj2 þ t2?

2
þ V2

4
� t4?

4
þ t2? þ V2ð Þt2jSð~kÞj2

r

: ð1:51Þ

For the two low-lying bands in the vicinity of the K (or K0) point the

spectrum has the ‘Mexican hat’ dispersion

Eð~kÞ � � V

2

Vh2v2

t2?
k2 þ h4v4

t2?V
k4

� �

; ð1:52Þ

where we assume, for simplicity, that hvk� V� t?j j. This expression has a

maximum at k¼ 0 and a minimum at k ¼ V=ð 2
p

hvÞ (see Fig. 1.8(b)). The

opportunity to tune a gap in bilayer graphene is potentially interesting for

applications. It was experimentally confirmed by Castro et al. (2007) and

Oostinga et al. (2008).

Consider now the effect of larger-distance hopping processes, namely

hopping between B sublattices (g3� 0.3 eV) (Brandt, Chudinov & Ponomarev,

1988; Dresselhaus & Dresselhaus, 2002). Higher-order terms, such as g4� 0.04

eV, are assumed to be negligible. These processes lead to a qualitative change of

the spectrum near the K (K0) point. As was shown by McCann & Falko (2006)

and McCann, Abergel & Falko (2007), the effective Hamiltonian (1.46) is

modified by g3 terms, giving

ĤK ¼
0

p̂x � ip̂y

� �2

2m

þ 3g3a

h
p̂x þ ip̂y

� �

p̂x þ ip̂y

� �2

2m

þ 3g3a

h
p̂x � ip̂y

� �

0

0

B

B

B

B

@

1

C

C

C

C

A

; ð1:53Þ

with the energy spectrum determined by the equation (assuming that jg3j� jg0j)

E2ð~kÞ � 3g3að Þ2k2 þ 3g3ah
2k3

m

cos 3f~k

� �

þ h2k2

2m


� �2

: ð1:54Þ

1.4 The electronic structure of bilayer graphene 17

              

       



This means that, at small enough wave vectors,

ka � g3g1
g0

2

�

�

�

�

�

�

�

�

� 10 2; ð1:55Þ

the parabolic dispersion law (1.47) is replaced by the linear one. The

corresponding level of doping when the Fermi wave vector satisfies the condi-

tions (1.55) is estimated as n< 1011 cm 2 (McCann, Abergel & Falko, 2007).

(a)

0.4
0 02

–0.10

0.2

0.0
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–0.05 0.00
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E

 (
e
V

)

E
 (

e
V

)

0.05 0.10

0 01

0 00

0 01

0 02
0 04 0 03 0 02 0 01 0 00 0 01 0 02

(b)

Fig. 1.9. The effect of trigonal warping on the electronic structure of bilayer
graphene. (a) A cross-section of the dispersion surface at f

k
! ¼ 0; one can see

the asymmetry of the spectrum (cf. Fig. 1.8(a)). (b) A general view of the
dispersion surface.
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The spectrum (1.54) is shown in Fig. 1.9. The termwith cos 3f~k

� �

in Eq. (1.53)

corresponds to the trigonal warping, which is more important for the bilayer

than it is for the single layer: it leads to a reconstruction of isoenergetic lines

when k grows. Instead of one point of parabolic touching of the bands at k¼ 0,

there are now four conical points at k¼ 0 and k ¼ 6m
g3a=h
2; cosð3f~kÞ ¼ �1,

where the signs � correspond to K and K0 valleys. The merging of four cones

into one paraboloid with increasing energy is a particular case of the Lifshitz

electronic topological transition associated with a Van Hove singularity of

the electron density of states (Lifshitz, Azbel & Kaganov, 1973; Abrikosov,

1988; Vonsovsky & Katsnelson, 1989).

1.5 Multilayer graphene

For the third layer of carbon atoms there are two options: it can be rotated

with respect to the second layer either by 60� or by 60�. In the first case, the

third layer lies exactly on top of the first layer, with the layer order aba. In the

second case, we will denote the structure as abc. In bulk graphite, the most

stable state corresponds to Bernal stacking, abab . . . However, rhombohedral

graphene with the stacking abcabc . . . also exists, as does turbostratic graphite

with an irregular stacking.

Here we consider the evolution of the electronic structure of N-layer

graphene with different stacking as N increases (Guinea, Castro Neto &

Peres, 2006; Partoens & Peeters, 2006; Koshino & McCann, 2010). First we

will discuss the case of Bernal stacking. We will restrict ourselves to consider-

ing only the simplest model with parameters g0¼ t and g1¼ t⊥, neglecting all

other hopping parameters gi. For the case of bilayer graphene this corres-

ponds to the Hamiltonian (1.43).

On introducing the basis functions cn;Að~kÞ and cn;Bð~kÞ (n¼ 1, 2, . . ., N is

the number of carbon layers, A and B label sublattices, and ~k is the two-

dimensional wave vector in the layer) we can write the Schrödinger equation as

Ec2n;Að~kÞ ¼ tSð~kÞc2n;Bð~kÞ þ t? c2n 1;Að~kÞ þ c2nþ1;Að~kÞ
h i

;

Ec2n;Bð~kÞ ¼ tS
ð~kÞc2n;Að~kÞ;

Ec2nþ1;Að~kÞ ¼ tS
ð~kÞc2nþ1;Bð~kÞ þ t? c2n;Að~kÞ þ c2nþ2;Að~kÞ
h i

;

Ec2nþ1;Bð~kÞ ¼ tSð~kÞc2nþ1;Að~kÞ:

ð1:56Þ

Excluding the components cB from Eqs. (1.56), one can write the equation

E
t2jSð~kÞj2

E

 !

cn;Að~kÞ ¼ t? cnþ1;Að~kÞ þ cn 1;Að~kÞ
h i

: ð1:57Þ
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For an infinite sequence of layers (bulk graphite with Bernal stacking) one

can try the solutions of Eq. (1.57) as

cn;Að~kÞ ¼ cAð~kÞeinx; ð1:58Þ

which gives us the energies (Wallace, 1947)

Eð~k; xÞ ¼ t? cos x� t2jSð~kÞj2 þ t2? cos
2ðxÞ

q

: ð1:59Þ

The parameter x can be written as x=2kzc, where kz is the z-component of

the wave vector, c is the interlayer distance and, thus, 2c is the lattice period

in the z-direction. A more accurate tight-binding model of the electronic

structure of graphite taking into account more hoppings gi was proposed by

McClure (1957) and Slonczewski &Weiss (1958); for reviews, see Dresselhaus &

Dresselhaus (2002) and Castro Neto et al. (2009).

For the case of N-layer graphene (n¼ 1, 2, . . ., N) one can still use Eq. (1.57),

continuing it for n¼ 0 and n¼Nþ 1, but with constraints

c0;A ¼ cNþ1;A ¼ 0 ð1:60Þ

requiring the use of linear combinations of the solutions with x and x; since

E(x)=E( x) the expression for the energy (1.59) remains the same but x is

now discrete. Owing to Eq. (1.60) we have

cn;A � sinðxpnÞ ð1:61Þ

with

xp ¼
pp

Nþ 1
; p ¼ 1; 2; . . . ;N: ð1:62Þ

Equations (1.59) and (1.62) solve formally the problem of the energy spec-

trum for N-layer graphene with Bernal stacking. For the case of bilayer

graphene cos xp ¼ � 1
2
and we come back to Eq. (1.44). For N¼ 3, there are

six solutions with cos xp ¼ 0;�1= 2
p

:

Eð~kÞ ¼
�tjSð~kÞj;
�t? 2
p

=2� t2?=2þ t2jSð~kÞj2
q

:

(

ð1:63Þ

We have both conical (like in single-layer graphene) and parabolic (like in

bilayer graphene) touching at K and K0 points where Sð~kÞ ! 0:

For rhombohedral stacking (abc), instead of Eq. (1.56), we have the

Schrödinger equation in the form
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Ec1;Að~kÞ ¼ tSð~kÞc1;Bð~kÞ þ t?c2;Að~kÞ;
Ec1;Bð~kÞ ¼ tS
ð~kÞc1;Að~kÞ;
Ec2;Að~kÞ ¼ tS
ð~kÞc2;Bð~kÞ þ t?c1;Að~kÞ;
Ec2;Bð~kÞ ¼ tSð~kÞc2;Að~kÞ þ t?c3;Að~kÞ;
Ec3;Að~kÞ ¼ tSð~kÞc3;Bð~kÞ þ t?c2;Bð~kÞ;
Ec3;Bð~kÞ ¼ tS
ð~kÞc3;Að~kÞ:

ð1:64Þ

On excluding from Eq. (1.64) c1,B and c3,B, one obtains

E
t2jSð~kÞj2

E

 !

c1;Að~kÞ ¼ t?c2;Að~kÞ;

E
t2jSð~kÞj2

E

 !

c3;Að~kÞ ¼ t?c2;Bð~kÞ;
ð1:65Þ

so we have just two equations for c2,A and c2,B,

E 1
t2?

E2 t2jSð~kÞj2

 !

c2;Að~kÞ ¼ tS
ð~kÞc2;Bð~kÞ;

E 1
t2?

E2 t2jSð~kÞj2

 !

c2;Bð~kÞ ¼ tSð~kÞc2;Að~kÞ;
ð1:66Þ

and, finally, the equation for the energy

E2 1þ t2?
t2jSð~kÞj2 E2

 !2

¼ t2jSð~kÞj2: ð1:67Þ

Near the K and K0 points when Sð~kÞ ! 0 there is a solution of Eq. (1.67) that

behaves as

Eð~kÞ � � t3jSð~kÞj3
t2?

/ �q3; ð1:68Þ

where ~q ¼ ~k ~K or ~k ~K0. So, in trilayer graphene with rhombohedral

stacking we have a gapless semiconducting state with cubic touching of the

conduction and valence bands.

If we have a rhombohedral stacking of N layers (each layer is rotated with

respect to the previous one by +60�), the low-lying part of the spectrum

behaves, similarly to Eq. (1.68), according to

Eð~qÞ / � tN

t?
N 1

qN ð1:69Þ

(Mañes, Guinea & Vozmediano, 2007).
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Effects of gi beyond the simplest model were discussed by Koshino &

McCann (2010).

To finish this chapter, we calculate the density of states

NðE Þ ¼ 2

ð

d 2k

ð2pÞ2
d E Eð~kÞ
� �

; ð1:70Þ

where integration is over the Brillouin zone of the honeycomb lattice and the

factor 2 takes into account spin degeneracy. For small energies E! 0 the

contribution to (1.70) comes only from the vicinity of the K and K0 points and
E ¼ Eðj~q jÞ depends, to a first approximation (neglecting trigonal warping),

only on the modulus of the wave vector. Thus, one gets

NðEÞ ¼ 2�2
ð

1

0

dq q

2p
d E Eð~qÞð Þ ¼ 2

p

qðEÞ
jdE=dqj : ð1:71Þ

For the case of single-layer graphene, according to Eq. (1.31),

NðEÞ ¼ 2

p

jEj
h2v2

ð1:72Þ

and the density of states vanishes linearly as E! 0. For bilayer graphene, due

to Eq. (1.47),

NðEÞ ¼ 2m


ph2
ð1:73Þ

and the density of states is constant. Finally, for the spectrum (1.69) the

density of states is divergent at E! 0, N> 2:

NðEÞ / 1

jEj1 2=N
: ð1:74Þ

At large enough energies the density of states has Van Hove singularities

(related to the M point) that are relevant for the optical properties and will be

discussed in Chapter 7.
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2

Electron states in a magnetic field

2.1 The effective Hamiltonian

The reality of massless Dirac fermions in graphene has been demonstrated by

Novoselov et al. (2005a) and Zhang et al. (2005) using quantized magnetic

fields. The discovery of the anomalous (half-integer) quantum Hall effect in

these works was the real beginning of the ‘graphene boom’. Discussion of the

related issues allows us to clarify in the most straightforward way possible the

basic properties of charge-carrier states in graphene, such as chirality, Berry’s

phase, etc. So, it seems natural, both historically and conceptually, to start

our consideration of the electronic properties of graphene with a discussion of

the effects of the magnetic field.

We proceedwith the derivation of the effectiveHamiltonian of band electrons

in a magnetic field (Peierls, 1933); our presentation will mainly follow

Vonsovsky & Katsnelson (1989). It is assumed that the magnetic length

lB ¼
hc

ej jB

s

ð2:1Þ

(B is the magnetic induction) is much larger than the interatomic distance:

lB � a; ð2:2Þ

which is definitely the case for any experimentally available fields; it would be

violated only for B� 104 T.

Another approximation is that we will take into account only p electrons and

neglect transitions to other electron bands (e.g., s bands). Since the distance

between p and s bands is of the order of the p bandwidth (see Fig. 1.5) one

can prove that the approximation is justified under the same condition (2.2) (see

the discussion of magnetic breakdown at the end of this section). A rigorous

theory of the effect of magnetic fields on Bloch states has been developed by
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Kohn (1959) and Blount (1962). It is rather cumbersome, and its use for the case

of graphene, with its very simple band structure, would obviously be overkill.

The original Hamiltonian is

H ¼ ~̂p2

2m
þ Vð~rÞ; ð2:3Þ

where

~̂p ¼ ~̂p
e

c
~A; ~p ¼ ih~r; ð2:4Þ

~A is the vector potential,

~B ¼ ~r	 ~A; ð2:5Þ
m is the mass of a free electron and Vð~rÞ is a periodic crystal potential. The

operators p̂a satisfy the commutation relations

p̂x; p̂y
	 


¼ p̂y; p̂x
	 


¼ ie

hc
B; ð2:6Þ

other commutators being zero (we assume that the magnetic induction is

along the z-axis).

We can try a general solution of the Schrödinger equation,

Hc ¼ Ec; ð2:7Þ
as an expansion in the Wannier basis jið~rÞ (we will omit the band label since

we will consider only p states):

c ¼
X

i

cijið~rÞ: ð2:8Þ

The Wannier function on state i can be represented as

jið~rÞ ¼ j0ð~r ~RiÞ ¼ exp
i

h
~Ri~̂p

� 


j0ð~rÞ; ð2:9Þ

where j0 is the function corresponding to the zero site.

For future use, we have to specify the gauge. Here we will use a radial gauge,

~A ¼ 1

2
~B	~r ¼ By

2
;
Bx

2
; 0

� �

: ð2:10Þ

Then, instead of the expansions (2.8) and (2.9), it is convenient to choose

another basis, namely

c ¼
X

i

ai~jið~rÞ;

~jið~rÞ ¼ exp
i

h
~Ri
~̂
P

� 


j0ð~rÞ;
ð2:11Þ
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where

~̂
P ¼ ~̂pþ e

c
~A: ð2:12Þ

The point is that the operators P̂a commute with p̂b and, thus, with the

kinetic energy term in Eq. (2.3):

p̂a; P̂b

	 


¼ ieh

c

qAb

qxa
þ qAa

qxb

� �

¼ 0 ð2:13Þ

due to Eq. (2.10). Using the identity

exp Âþ B̂
� �

¼ exp Â
� �

exp B̂
� �

exp
1

2
Â; B̂
	 


� �

ð2:14Þ

(assuming Â; Â; B̂
	 
	 


¼ B̂; Â; B̂
	 
	 


¼ 0), see Vonsovsky & Katsnelson (1989),

one can prove that the operator

exp
i

h
~Ri
~̂
P

� �

¼ exp
ie

2hc
~Ri 	 ~B
� �

~r

� 


exp
i

h
~Ri~̂p

� 


ð2:15Þ

commutes also with the potential energy V ~rð Þ due to translational invariance

of the crystal:

exp
i

h
~Ri~̂p

� 


V ~rð Þ . . . ¼ V ~rþ ~Ri

� �

exp
i

h
~Ri~̂p

� 


. . . ¼ V ~rð Þexp i

h
~Ri~̂p

� 


. . . ð2:16Þ

and, thus, the Hamiltonian matrix in the basis (2.12) has the form

Hij ¼
ð

d~rj
0 ~rð ÞĤ exp
i

h
~Ri
~̂
P

� �

exp
i

h
~Rj
~̂
P

� �

j0 ~rð Þ: ð2:17Þ

Using, again, Eq. (2.14) one finds

(2.18)

exp
i

h
~Ri
~̂
P

� �

exp
i

h
~Rj
~̂
P

� �

¼ exp
i

h
~̂
P ~Ri

~Rj

� �

� �

exp
ie

2hc
~Ri 	 ~Rj

� �

~B

� 


¼ exp
i

2hc
~Ri

~Rj

� �

	 ~B
h i

~r

� 


	 exp
ie

2hc
~Ri 	 ~Rj

� �

~B

� 


exp
i

h
~̂p ~Ri

~Rj

� �

� 


:

The Wannier functions are localized within a region of extent a few inter-

atomic distances, so, to estimate the various terms in (2.18), one has to

assume r� a and ~Ri
~Rj

�

�

�

� � a and take into account Eq. (2.2).
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Thus,

Hij � exp
ie

2hc
~Ri 	 ~Rj

� �

~B

� 


tij; ð2:19Þ

where tij ¼ Hijð~B ¼ 0Þ is the hopping parameter without a magnetic field.

With the same accuracy, one can prove that the basis (2.11) is orthonormal.

Further straightforward transformations (Vonsovsky & Katsnelson, 1989)

show that the change of the hopping parameters (2.11) corresponds to a

change of the band Hamiltonian t ~pð Þ (where ~p ¼ h~k) by

Ĥeff ¼ t ~̂p
� �

ð2:20Þ

and, thus, the Schrödinger equation (2.7) takes the form

t ~̂p
� �

c ¼ Ec: ð2:21Þ

Instead of the operators p̂x and p̂y satisfying the commutation relations (2.6),

it is convenient to introduce the standard Bose operators b̂ and b̂þ by writing

p̂ ¼ p̂x ip̂y ¼
2 ej jhB

c

r

b̂;

p̂þ ¼ p̂x þ ip̂y ¼
2 ej jhB

c

r

b̂þ
ð2:22Þ

in such a way that

b̂; b̂þ
h i

¼ 1: ð2:23Þ

We will see later that this representation is very convenient for the cases of

both single-layer and, especially, bilayer graphene.

To finish this section, we should discuss the question of neglected

transitions to other bands (magnetic breakdown). If the distance between

the bands is of the order of their bandwidth (which is the case for s and p

bands in graphene), the condition (2.2) still suffices to allow us to neglect the

transitions. If the gap between the states D�jtj, the magnetic breakdown can

be neglected if

ej jB
hc
¼ 1

l 2B
� D

t

� �2
1

a2
;

where we assume that t � h2=ðma2Þ (Vonsovsky & Katsnelson, 1989).

Similarly to the derivation of equations for the electron spectrum of a semi-

conductor with impurities in the effective-mass approximation (Tsidilkovskii,
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1982), one can prove that, if the magnetic induction ~B x; yð Þ is inhomogen-

eous but the spatial scale of this inhomogeneity is much larger than a, the

Hamiltonian (2.20) still works.

2.2 Landau quantization for massless Dirac fermions

Let us apply the general theory to electrons in graphene in the vicinity of the

point K. It follows from Eqs. (1.22), (2.20) and (2.22) that the effective

Hamiltonian is

Ĥ ¼ v
0 p̂

p̂þ 0

� �

¼ 2 ej jhBv2
c

r

0 b̂

b̂þ 0

� �

ð2:24Þ

and the Schrödinger equation (2.21) for the two-component spinor reads

b̂c2 ¼ ec1;

b̂þc1 ¼ ec2;
ð2:25Þ

where we have introduced a dimensionless quantity e, such that

E ¼ 2 ej jhBv2
c

r

e � 2
p

hv

lB
e: ð2:26Þ

We assume here that B> 0 (magnetic field up). For the second valley K0, c1

and c2 exchange their places in Eq. (2.25).

First, one can see immediately from (2.25) that a zero-energy solution

exists with c1¼ 0, and c2� j0i is the ground state of a harmonic oscillator:

b 0j i ¼ 0: ð2:27Þ

This solution is 100% polarized in pseudospin; that is, for a given direction of

the magnetic field for the valleys K and K0, electrons in this state belong

completely to sublattices A and B, respectively, or conversely if the direction

of the magnetic field is reversed.

To find the complete energy spectrum, one has to act with the operator b̂þ

on the first equation of (2.25), which gives us immediately

b̂þb̂c2 ¼ e2c2 ð2:28Þ

with the well-known eigenvalues

e2n ¼ n ¼ 0; 1; 2; . . . ð2:29Þ
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Thus, the eigenenergies of massless Dirac electrons in a uniform magnetic

field are given by

E �ð Þn ¼ �hoc n
p

; ð2:30Þ

where the quantity

hoc ¼
2
p

hv

lB
¼ 2h ej jBv2

c

r

ð2:31Þ

will be called the ‘cyclotron quantum’. In the context of condensed-matter

physics, this spectrum was first derived by McClure (1956), in his theory of

the diamagnetism of graphite. This spectrum is drastically different from that

for nonrelativistic electrons with tð~̂pÞ ¼ ~̂p2=ð2mÞ, where (Landau, 1930)

en ¼ h~oc nþ 1

2

� �

; ~oc ¼
ej jB
mc

: ð2:32Þ

Discrete energy levels of two-dimensional electrons in magnetic fields are

called Landau levels.

First, the spectrum (2.31), in contrast with (2.32), is not equidistant.

Second, and more importantly, the zero Landau level (n¼ 0) has zero energy

and, due to the electron hole symmetry of the problem, is equally shared

by electrons and holes. The states at this level are chiral; that is, they belong

to only one sublattice, as was explained above. The existence of the zero

Landau level has deep topological reasons and leads to dramatic conse-

quences for the observable properties of graphene, as will be discussed later

in this chapter.

To understand better the relations between relativistic and nonrelativistic

Landau spectra, let us calculate the Hamiltonian (2.24) squared, taking into

account the commutation relations (2.6):

Ĥ
2¼ v2 ~s~̂p

� �2

¼ v2~̂p2 þ iv2~̂s ~̂p	 ~̂p
� �

¼ v2~̂p2
v2h ej jB

c
sz: ð2:33Þ

The spectrum of the operator (2.33) can be immediately found from the

solution of the nonrelativistic problem if one puts m¼ 1/(2v2). Then,

E2
n ¼

2h ej jBv2
c

nþ 1

2

� �

� v2h ej jB
c
¼ 2h ej jBv2

c
nþ 1

2
� 1

2

� �

; ð2:34Þ

where �1 are eigenstates of the operator ŝz. The last term in Eq. (2.33) looks

like Zeeman splitting, and the existence of the zero Landau level in these

terms results from an exact cancellation of the cyclotron energy and the
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Zeeman energy. Actually, for free electrons, for which the same mass is

responsible both for the orbital motion and for the internal magnetic

moment, the situation is exactly the same:

En;s ¼
h ej jB
mc

nþ 1

2

� �

� h ej jB
2mc

: ð2:35Þ

In semiconductors the effective electron mass is usually much smaller than the

effective electron mass, and the Zeeman term gives just small corrections to

Landau quantization. For the case of graphene, the pseudo-Zeeman term

originates also from the orbital motion, namely from hopping processes

between neighbouring sites.

To find the eigenfunctions corresponding to the eigenenergies (2.30) one

needs to specify a gauge for the vector potential. The choice (2.10) gives us

solutions with radial symmetry. It is more convenient, however, to use the

Landau gauge

~A ¼ 0;Bx; 0ð Þ: ð2:36Þ

Then Eq. (2.25) takes the form

q

qx
i
q

qy

x

l2B

� �

c2 ¼
iE

hv
c1;

q

qx
þ i

q

qy
þ x

l2B

� �

c1 ¼
iE

hv
c2:

ð2:37Þ

In the gauge (2.36) y is the cyclic coordinate, and the solutions of Eq. (2.37)

can be tried in the form

c1;2 x; yð Þ ¼ c1;2 xð Þexp ikyy
� �

; ð2:38Þ

which transforms Eqs. (2.37) into

q

qx

x x0

l2B

� �

c2 ¼
iE

hv
c1;

q

qx
þ x x0

l2B

� �

c1 ¼
iE

hv
c2;

ð2:39Þ

where

x0 ¼ l2Bky ð2:40Þ

is the coordinate of the centre of the electron orbit (Landau, 1930). On

introducing a dimensionless coordinate
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X ¼ 2
p

lB
x x0ð Þ ð2:41Þ

and a dimensionless energy (2.26), one can transform Eq. (2.37) to

d 2

dX 2
þ e2 þ 1

2

X 2

4

� �

c1 Xð Þ ¼ 0; ð2:42Þ

c2 Xð Þ ¼ i

e

d

dX
þ X

2

� �

c1 Xð Þ: ð2:43Þ

We assume in the second equation that e 6¼ 0, otherwise

c1 Xð Þ � exp
X 2

4

� �

;

c2 Xð Þ ¼ 0:

ð2:44Þ

The only solution of Eq. (2.42) vanishing at X! 1 (the second one is

exponentially growing) is, with an accuracy to within a constant multiplier,

c1 Xð Þ ¼ De2 Xð Þ; ð2:45Þ

where Dn(X) is the Weber function (Whittaker & Watson, 1927) and

c2 Xð Þ ¼ ieDe2 1 Xð Þ: ð2:46Þ

If the sample is not restricted for both X! 1 and X!1, the solutions

(2.45) and (2.46) are normalizable only for integer e2, which gives us again the

quantization condition (2.29). For an integer index n, the Weber functions

Dn Xð Þ ¼ 1ð Þn exp X 2

4

� �

d n

dXn
exp

X 2

2

� �

ð2:47Þ

decay as exp( X2/4) for X!�1.

The energy is not dependent on the quantum number ky or, equivalently, on

the position of the centre of the orbit x0. Thismeans that theLandau levels (2.30)

have a macroscopically large degeneracy g. To calculate it, it is convenient to

use a periodic (Born von Kármán) boundary condition in the y-direction,

c1;2 x; yð Þ ¼ c1;2 x; yþ Ly

� �

ð2:48Þ

(for large enough samples the density of states does not depend on boundary

conditions, Vonsovsky & Katsnelson (1989)). Thus,

ky ¼
2p

Ly

n; ð2:49Þ
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where n¼ 0, �1, . . . The maximum value of n is determined by the condition

that the centre of the orbit should be within the sample: 0< x0<Lx (Lx is the

width of the sample in the x-direction), or

ky
�

�

�

� <
Lx

l2B
¼ ej jB

hc
Lx: ð2:50Þ

Thus, the total number of solutions is

g ¼ ej jB
hc

LxLy

2p
¼ ej jB

hc

A

2p
¼ F

F0

; ð2:51Þ

where A¼LxLy is the sample area, F is the total magnetic flux though the

sample and

F0 ¼
hc

ej j ð2:52Þ

is the flux quantum. Keeping in mind further applications to graphene, one

should multiply the degeneracy (2.51) by a factor of 4, namely a factor of 2

for the two valleys K and K0 and a further factor of 2 for the two spin

projections. The latter is possible since the ratio of the Zeeman energy

Ez ¼ ej jhB=ð2mcÞ to the cyclotron quantum hoc is always very small (about

0.01 in fields B� 10 30T).

2.3 Topological protection of the zero-energy states

The existence of the zero-energy Landau level is the consequence of one of the

most important theorems of modern mathematical physics, the Atiyah

Singer index theorem (Atiyah & Singer, 1968, 1984). This theorem has

important applications in quantum field and superstring theories (Kaku,

1988; Nakahara, 1990). In its simplest version, being applied to the operator

Ĥ ¼ v~̂s ih ~r e

c
~A x; yð Þ

� �

ð2:53Þ

acting on a torus (that is, with periodic boundary conditions both in the

y- and in the x-direction), the theorem states that the index of this operator is

proportional to the total flux, namely

index Ĥ
� �

¼ Nþ N ¼ F

F0

ð2:54Þ

for an inhomogeneous magnetic field as well as for a homogeneous one. Here

Nþ is the number of solutions with zero energy and positive chirality,

Ĥc1 ¼ 0; c2 ¼ 0; ð2:55Þ
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and N is the number of solutions with zero energy and negative chiraity,

c1 ¼ 0; Ĥc2 ¼ 0: ð2:56Þ

For the case of a homogeneous magnetic field, Nþ¼ g is given by Eq. (2.51)

and N ¼ 0. Strictly speaking, we did not consider the case of a torus; instead

we considered periodic boundary conditions in the y-direction only; the case

of a torus is analysed by Tenjinbayashi, Igarashi & Fujiwara (2007), and the

result for the number of zero modes is the same. A simplified (in comparison

with the general case) formal discussion of the Atiyah Singer theorem for the

Hamiltonian (2.53) can be found in Katsnelson & Prokhorova (2008).

The index theorem tells us that the zero-energy Landau level is topologic-

ally protected; that is, it is robust with respect to possible inhomogeneities of

the magnetic field (Novoselov et al., 2005a; Katsnelson, 2007a). This state-

ment is important for real graphene since the effective magnetic field there

should be inhomogeneous due to the effect of so-called ripples, as will be

discussed in Chapter 10.

The simplest way (at least for physicists) to understand the robustness of

zero-energy modes is to construct explicitly the solutions for zero-energy

states in an inhomogeneous magnetic field. This was done by Aharonov &

Casher (1979) for the case of an infinite sample with the magnetic flux F

localized in a restricted region.

Let us assume, first, that the vector potential satisfies the condition

~r~A ¼ 0; ð2:57Þ

otherwise, one can always use the gauge transformation

~A! ~Aþ ~rw; c! c exp
ie

hc
w

� �

; ð2:58Þ

choosing w to provide Eq. (2.57). Thus, one can introduce a scalar ‘potential’

j(x, y) such that

Ax ¼
qj

qx
; Ay ¼

qj

qy
ð2:59Þ

and, due to Eq. (2.5),

B ¼ r2j: ð2:60Þ
Then, the equations (2.55) and (2.56) can be written in the form

q

qx
þ is

q

qy
þ ie

hc

qj

qx
þ se

hc

qj

qy

� �

c1;2 ¼ 0; ð2:61Þ
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where s¼ 1 and 1 for c1 and c2, respectively. The potential j can be

excluded by the substitution

c1;2 ¼ exp
se

hc
j

� �

f1;2; ð2:62Þ

which transforms Eq. (2.61) into the equation

q

qx
þ is

q

qy

� �

f1;2 ¼ 0: ð2:63Þ

This means that f1 and f2 are analytic and complex-conjugated analytic entire

functions of z¼ xþ iy, respectively.

The equation (2.60) has a solution

j ~rð Þ ¼
ð

d~r 0G ~r;~r 0ð ÞB ~r 0ð Þ; ð2:64Þ

where

G ~r;~r 0ð Þ ¼ 1

2p
ln

~r ~r 0j j
r0

� �

ð2:65Þ

is the Green function of the Laplace operator in two dimensions (Jackson,

1962), where r0 is an arbitrary constant. At r!1

j rð Þ � F

2p
ln

r

r0

� �

ð2:66Þ

and

c1;2 rð Þ ¼ r0

r

� �
seF
2p�hc

f1;2 ~rð Þ; ð2:67Þ

where

F ¼
ð

d~r ~B ~rð Þ ð2:68Þ

is the total magnetic flux. Since the entire function f(z) cannot go to zero in all

directions at infinity, ci can be normalizable only assuming that seF> 0; that

is, zero-energy solutions can exist only for one (pseudo)spin direction, depending

on the sign of the total flux.

Let us count now how many independent solutions of Eq. (2.63) we have.

As a basis, we can choose just polynomials searching the solutions of the form

f1 zð Þ ¼ z j ð2:69Þ
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(to be specific, we consider the case eF> 0), where j¼ 0, 1, 2, . . . One can see

from Eq. (2.67) that the solution is integrable with the square only assuming

that j<N, where N is the integer part of

eF

2phc
¼ F

F0

:

Thus, the number of the states with zero energy for one (pseudo)spin projec-

tion is equal to N, and there are no such solutions for another spin projection.

This agrees with Eq. (2.54).

2.4 Semiclassical quantization conditions and Berry’s phase

The exact spectrum (2.30) of Dirac electrons in a uniform magnetic field B

seems to be in a contradiction with the Lifshitz Onsager semiclassical quantiza-

tion condition (Lifshitz, Azbel&Kaganov, 1973;Abrikosov, 1988;Vonsovsky&

Katsnelson, 1989)

S Enð Þ ¼
2p ej jB
hc

nþ 1

2

� �

; ð2:70Þ

where S(En) is the area of k-space inside the line determined by the equation

E kx; ky
� �

¼ En: ð2:71Þ

For massless Dirac electrons this is just a circle of radius k Eð Þ ¼ E=ðhvÞ, and

S Eð Þ ¼ p
E2

hvð Þ2
; ð2:72Þ

so the term with 1
2
in Eq. (2.70) should not exist. Strictly speaking, the

semiclassical condition (2.70) is valid only for highly excited states, n� 1;

however, for these states it should give us not only the leading, but also the

subleading, term correctly, which is not the case now.

The replacement n! nþ 1
2
follows from the existence of two turning

points for a classical periodic orbit; in a more general case, it is related to

the so-called Keller Maslov index. The simplest way to derive it is probably

by using the saddle-point approximation in the path-integral formulation of

quantum mechanics (Schulman, 1981). It turns out that the case of electrons

in single-layer (as well as in bilayer, see below) graphene is very special, and,

for Dirac fermions, the correct semiclassical condition is

S Enð Þ ¼
2p ej jB
hc

n; ð2:73Þ
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which gives us, together with Eq. (2.72), the exact spectrum (2.30), including

the existence of a zero mode at n¼ 0. Of course, in general, we are not always

so lucky, and for the case of bilayer graphene (Section 2.5) the situation is

different.

The mystery of the missing term 1
2
is a good way to introduce one of the

deepest concepts of modern quantum mechanics, namely Berry’s (or the

geometrical) phase (Berry, 1984; Schapere & Wilczek, 1989).

Let us start with the following simple observation. If we rotate the ~k vector

by the angle 2p, the wave functions (1.30) change sign:

ce;h f~k ¼ 2p
� �

¼ ce;h f~k ¼ 0
� �

: ð2:74Þ

This is not surprising when rotating spin 1
2
in spin space, but we are talking

about rotations in real physical space, and our ‘spin’ is just a label for sub-

lattices! This property (2.74) has a deep geometrical and topological meaning.

Berry (1984) considered a general adiabatic evolution of a quantum system.

To be specific, we will apply these ideas to the evolution of electron states in ~k

space (Zak, 1989; Chang & Niu, 2008).

The Bloch states

c
n~k

~rð Þ ¼ u
n~k

~rð Þexp i~k~r
� �

; ð2:75Þ

where u
n~k

~rð Þ is the Bloch amplitude periodic in the real space, evolve under the

action of external electric and magnetic fields. If they are time-independent, or

their time dependence is slow in comparison with typical electron times of the

order of h=W (W is the bandwidth), this evolution is mainly within the same

band n, with an exponentially small probability of interband transitions

(electric or magnetic breakdown) (Vonsovsky & Katsnelson, 1989).

By substituting Eq. (2.75) into the Schrödinger equation one can derive the

equation for the Bloch amplitude with a slowly varying wave vector ~k tð Þ,

ih
q u tð Þj i
qt

¼ Ĥeff
~k tð Þ
� �

u tð Þj i ð2:76Þ

(an explicit form of the Hamiltonian Heff is not essential here). The time-

dependent band states jn~ki satisfy a stationary Schrödinger equation

Ĥeff
~k
� �

n; ~k
�

�

�

E

¼ En
~k
� �

n; ~k
�

�

�

E

; ð2:77Þ

where n~k
�

�

�

E

¼ u
n~k

~rð Þ. Neglecting interband transitions, one can try the solu-

tion of Eq. (2.76) with an initial condition

u 0ð Þj i ¼ n; ~k 0ð Þ
�

�

�

E

ð2:78Þ
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as

u tð Þj i ¼ u 0ð Þj i exp i

h

ð

t

0

dt 0 En
~k t 0ð Þ
� �

8

<

:

9

=

;

exp ign tð Þf g n; ~k tð Þ
�

�

�

E

: ð2:79Þ

On substituting Eq. (2.79) into Eq. (2.76), one finds

qgn tð Þ
qt
¼ i n; ~k tð Þ
D �

�

�

~r~k n; ~k tð Þ
�

�

�

E d~k tð Þ
dt

: ð2:80Þ

If we consider a periodic motion ~k tð Þ ¼ ~k 0ð Þ, then, on integrating Eq. (2.80)

over the period of motion t, one finds for the Berry phase

gn ¼ i

þ

C

d~k n; ~k
D �

�

�

~r~k n; ~k
�

�

�

E

; ð2:81Þ

where C is a line drawn by the end of the vector ~k tð Þ. For nondegenerate

bands, it is obvious that gn¼ 0. However, this is not the case for a degenerate

spectrum and, in particular, for the case in which conical points exist, like in

graphene.

Using Stokes’ theorem, Eq. (2.81) can be written in terms of the surface

integral over the area, restricted by the contour C:

gn Cð Þ ¼ Im

ð

d~S �~r~k 	 n; ~k
D �

�

�

~r~k n; ~k
�

�

�

E

¼ Im

ð

d~S ~r~k n
D �

�

�	 ~r~k n
�

�

�

E

ð2:82Þ

with obvious notations, e.g., ~r~k n
�

�

�

E

¼~r~k n; ~k
�

�

�

E

.

To demonstrate explicitly the role of crossing points of the energy spectrum

(such as the conical points in graphene), we introduce, following Berry (1984),

the summation over a complete set of eigenstates jmi:

~r~kn
D �

�

�	 ~r~k n
�

�

�

E

¼
X

m

~r~k n
�

�

� m
D E

	 m
�

�

�

~r~k n
D E

: ð2:83Þ

The term with m¼ n in Eq. (2.83) is obviously zero and can be omitted since,

due to the normalization condition hnjni¼ 1, ~r~k n
�

�

�n
D E

¼ n ~r~k n
�

�

�

D E

. On

differentiating Eq. (2.77) with respect to ~k one has

~r~k Ĥeff nj i þ Ĥeff En

� �

~r~k n
�

�

�

E

¼~rkEn nj i: ð2:84Þ

On multiplying Eq. (2.84) by hmj from the left and taking into account that

hmjni¼ 0 at m 6¼ n, one finds
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m
�

�

�

~r~kn
D E

¼
m ~r~kĤeff

�

�

�

�

�

�n
ED

En Em

: ð2:85Þ

Finally, by substituting Eq. (2.85) into Eq. (2.83) we derive the following

expression for the Berry phase:

gn Cð Þ ¼
ð

d~S ~Vn
~k
� �

; ð2:86Þ

where

~Vn ¼ Im
X

m6 n

nh j~r~kĤeff mj i 	 mh j~r~kĤeff nj i
Em Enð Þ2

:

Suppose we have two neighbouring bands described by the effective

Hamiltonian

Ĥeff ¼
1

2
~R ~k
� �

~s ð2:87Þ

with the eigenenergies

E� ~k
� �

¼ � 1

2
R ~k
� ��

�

�

�

�

�: ð2:88Þ

We can make the following replacements of variables in the integral (2.86):
~k! ~R, d~S! d~S~R and~r~k !~r~R.

After that the calculations are trivial:

g� Cð Þ ¼ �
ð

d~S~R
~V ~R
� �

; ð2:89Þ

where

~V ~R
� �

¼
~R

2R3
;

which is nothing other than the electric flux through the contour C created by

the charge 1
2
at the point ~R ¼ 0. The answer is obvious:

g� Cð Þ ¼ � 1

2
O Cð Þ; ð2:90Þ

where O(C) is the solid angle of the contour (Fig. 2.1).

For the case of massless Dirac fermions ~R ~k
� �

� ~k is the two-dimensional

vector (kx, ky), and the solid angle is 2p, so the Berry phase is

g� ¼ �p; ð2:91Þ
in agreement with Eq. (2.74).
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As was demonstrated by Kuratsuji & Iida (1985), the Berry phase enters

the semiclassical quantization condition. Their approach was based on the

path-integral formalism (Schulman, 1981). Here we will present in the sim-

plest way just a general idea of the derivation. Instead of ~k tð Þ we will consider
a general set of slowly varying with time (adiabatic) variables ~x tð Þ.

Let us consider a periodic process with xi (t)¼ xi (0). We are interested in

calculating the evolution operator

K̂ tð Þ ¼ T̂ exp
i

h

ð

t

0

dtĤ xi tð Þ½ �

8

<

:

9

=

;

; ð2:92Þ

where Ĥ is the Hamiltonian dependent on ~x tð Þ and T̂ is the time-ordering

operator. To calculate the expression (2.92) via a path integral, one has to

discretize the time interval, tn¼ ne, where n¼ 0, 1, . . ., N 1 and e¼T/N

(N!1):

K̂ tð Þ ¼ Tr exp
ie

h
Ĥ t0ð Þ

� �

exp
ie

h
Ĥ t1ð Þ

� �

. . . exp
ie

h
Ĥ tN 1ð Þ

� �� 


: ð2:93Þ

In the adiabatic approximation, the evolution involves only the transitions

between the same states of the Hamiltonian:

(2.94)

K̂ tð Þ ¼
X

n

n t0ð Þh jexp ie

h
Ĥ t0ð Þ

� �

n t1ð Þj i n t1ð Þh jexp ie

h
Ĥ t1ð Þ

� �

n t2ð Þj i

. . . n tN 1ð Þh jexp ie

h
Ĥ tN 1ð Þ

� �

n tð Þj i:

R = 0

C

Fig. 2.1. The derivation of Berry’s phase (Eq. (2.90)).
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At e! 0, the overlap integral

n tð Þ
�

�

� n tþ eð Þ
D E

� n tð Þ
�

�

� n tð Þ
D E

þ e
d~x

dt
n tð Þ

�

�

�

~r~x n tð Þ
D E

¼ 1þ e
d~x

dt
n tð Þ

�

�

�

~r~xn tð Þ
D E

� exp e
d~x

dt
n tð Þ

�

�

�

~r~xn tð Þ
D E

� �

ð2:95Þ

and each term in hnj . . . jni in Eq. (2.94), apart from the standard dynamical

contribution, has an additional phase factor

Y

N 1

n 0

n tnð Þjn tnþ1ð Þh i ¼ exp

ð

t

0

dt
d~x

dt
n
�

�

�

~r~x n
D E

2

4

3

5¼ exp ign Cð Þ½ � ð2:96Þ

(cf. Eq. (2.81)), which leads to the change of the effective action of the system

S! Sþ hg. On repeating a standard derivation of the semiclassical quantiza-

tion condition, one can see that nþ 1
2
is replaced by nþ 1

2
g=ð2pÞ. In par-

ticular, for Bloch electrons in a magnetic field, instead of Eq. (2.70), one has

S Enð Þ ¼
2p ej jB
hc

nþ 1

2

g

2p

� �

ð2:97Þ

(Mikitik & Sharlai, 1999). For g¼ p one has the quantization condition

(2.73).

Again, we see that anomalous quantization of Landau levels for the case of

graphene is related to the nontrivial topological properties of a system with a

conical point in its energy spectrum.

2.5 Landau levels in bilayer graphene

Consider now the case of bilayer graphene (Novoselov et al., 2006; McCann &

Falko, 2006; McCann, Abergel & Falko, 2007; Falko, 2008).

Let us start with the simplest Hamiltonian (1.46), which means intermedi-

ate energies

g23
t?j j
t2
� Ej j � t?j j: ð2:98Þ

At lower energies (cf. Eq. (1.55)) trigonal warping terms in the Hamiltonian

(1.53) become important and at higher energies all four bands (1.44) become

relevant. For realistic parameters, this means energies of the order of tens of

meV. Later we will consider a more general case.
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On combining Eq. (1.46) with Eqs. (2.20) and (2.22) we find the Hamilto-

nian for the case of a uniform magnetic field:

Ĥ ¼ ho
c
0 b̂2

ðb̂þÞ2 0

� �

; ð2:99Þ

where

o
c ¼
ej jB
m
c

ð2:100Þ

is the cyclotron frequency for nonrelativistic electrons with effective mass m
.

Then, instead of Eq. (2.25) for single-layer graphene, one has the Schrödinger

equation

b̂2c2 ¼ ec1;

b̂þ
� �2

c1 ¼ ec2;
ð2:101Þ

where the dimensionless energy e is introduced now by writing

E ¼ ho
c e: ð2:102Þ

Again, for the case of valley K0 one has to exchange c1 and c2.

First, one can see immediately from Eq. (2.102) that there are zero modes

with e¼ 0 and c2¼ 0, and their number is twice as great as for the case of a

single layer. Indeed, both the states of the harmonic oscillator with n¼ 0 and

those with n¼ 1 satisfy the equation b̂2 cj i ¼ 0:

b̂ 0j i ¼ 0; b̂2 1j i ¼ b̂ b̂ 1j i
� �

¼ b̂ 0j i ¼ 0: ð2:103Þ

On multiplying the first of the equations (2.101) by b̂þ
� �2

from the left, one

finds

b̂þ
� �2

b̂2c1 ¼ e2c1: ð2:104Þ

Since

b̂þ
� �2

b̂2 ¼ b̂þb̂
� �

b̂þb̂ 1
� �

ð2:105Þ

we have immediately the spectrum

En ¼ �ho
c n n 1ð Þ
p

ð2:106Þ

with n¼ 0, 1, 2, . . .
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The counting of the degeneracy of Landau levels (2.106) can be done in

exactly the same way as in Section 2.2, and one finds, instead of Eq. (2.51),

gn ¼
F

F0

; n � 2; ð2:107Þ

and

g0 ¼
2F

F0

ð2:108Þ

(the latter follows from the fact that the zero and first levels are degenerate,

Eq. (2.103)).

One can prove that Eq. (2.108) follows from theAtiyah Singer index theorem

and remains correct if the magnetic field is inhomogeneous (Katsnelson &

Prokhorova, 2008). This fact is quite simple and follows from the property

that the index of a product of operators equals the sum of their indices. An

explicit construction of zero modes for the Hamiltonian (2.99) that is similar

to the Aharonov Casher construction for the case of the Dirac equation

(see Section 2.3) was done by Kailasvuori (2009).

For n� 1, the spectrum (2.106) is described by the expression

Enj j � ho
c n
1

2

� �

; ð2:109Þ

in agreement with the semiclassical quantization condition

S Enð Þ ¼
2p ej jB
hc

n
1

2

� �

: ð2:110Þ

It follows from the general quantization law (2.97) assuming that the Berry phase

g ¼ 2p: ð2:111Þ

This is indeed the case (Novoselov et al., 2006; McCann & Falko, 2006). The

Hamiltonian (1.46) has the form (2.87) with

Rx;Ry

� �

� k2x k2y; 2kxky

� �

or

Rx þ iRy

� �

� kx þ iky
� �2

: ð2:112Þ

It is clear, therefore, that when the vector ~k runs over the closed loop the vector
~R runs over the same loop twice, and the Berry phase should be twice as large

as for the case of a single layer. Actually, the Berry phase and the index are
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proportional; they are both related to the winding number of the vector ~R in

the Hamiltonian (Katsnelson & Prokhorova, 2008). For the case of a rhombo-

hedralN-layer system (1.69) the number of zero modes is equal toN F/F0 and

the Berry phase is g¼Np.

2.6 The case of bilayer graphene: trigonal warping effects

Consider now the case of small energies,

Ej j � g23
t?j j
t2

: ð2:113Þ

Thus, the effects of trigonal warping should be taken into account, and one

has to proceed with the Hamiltonian (1.53). Instead of the Hamiltonian (2.99)

we have for the case of a uniform magnetic field

Ĥ ¼ ho
c
0 b̂2 þ ab̂þ

ðb̂þÞ2 þ ab̂ 0

� �

; ð2:114Þ

where

a ¼ 3g3am



h2
2hc

ej jB

s

ð2:115Þ

is a dimensionless parameter characterizing the role of trigonal warping.

The Schrödinger equation (2.101) is modified to the form

b̂2 þ ab̂þ
� �

c2 ¼ ec1;

ðb̂þÞ2 þ ab̂
� �

c1 ¼ ec2:

ð2:116Þ

First, let us consider zero modes with e¼ 0 and c1¼ 0. Taking into account

that in dimensionless coordinates, (2.40) and (2.41),

b̂ ¼ i
q

qX
þ X

2

� �

;

b̂þ ¼ i
q

qX

X

2

� �

;

ð2:117Þ

the first of the equations (2.116) for e¼ 0 reads

d 2c2

dX2
þ Xþ iað Þ dc2

dX
þ 1

2
þ X2

4

iXa

2

� �

c2 ¼ 0: ð2:118Þ
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The substitution

c2 Xð Þ ¼ exp
X2

4

ia

2
X

� �

j Xð Þ ð2:119Þ

eliminates the first derivative q/qX in Eq. (2.118), so

q
2

qX2
jþ a2

4
iXa

� �

j ¼ 0: ð2:120Þ

At a¼ 0 there are two independent solutions of Eq. (2.120), j0¼ 1 and

j1¼X. For finite a there are still two solutions, and they can be expressed

in terms of Bessel functions of order � 1
3
(Whittaker & Watson, 1927).

Anyway, both of the solutions (2.119) vanish at X!�1 due to the factor

exp( X2/4) and, therefore, the number of zeromodes remains the same at a 6¼ 0.

Obviously, the second of the equations (2.116) has no normalizable solutions

at e¼ 0. These results are not surprising; they are related to a general state-

ment that index(H) is determined solely by the terms with the highest order of

derivatives (Katsnelson & Prokhorova, 2008).

To consider the effects of the trigonal warping on other Landau levels one

has to square the Hamiltonian (2.114) or just act by the operator

ðb̂þÞ2 þ ab̂
� �

from the left on the first equation of Eq. (2.116). The result is

L̂c2 ¼ e2c2; ð2:121Þ
where

L̂ ¼ b̂þb̂
� �2

1 a2
� �

b̂þb̂þ a b̂3 þ ðb̂þÞ3
� �

:

Using a standard perturbation theory in a one can find a strange result: only

the level with n¼ 2 has corrections of the order of a2,

e2
2 ¼ 2

a2

3
; ð2:122Þ

whereas the leading corrections to the levels with n> 2 are proportional to a4

and positive.

To understand qualitatively the opposite case of a very large a (or very

weak magnetic fields), it is convenient to use the semiclassical approximation

(Dresselhaus, 1974). In this regime, one can consider energy levels belonging

independently to each of four cones of the spectrum (see Fig. 1.9). The energy

level with n¼ 2 tends to zero at a!1 since one more zero mode should

appear for three independent (in this limit) side cones: the zero mode corres-

ponding to the central cone is associated (for a given direction of the magnetic

field) with another valley.
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Fig. 2.2. The energy spectrum for bilayer graphene in a magnetic field, with
the trigonal warping effects taken into account. Here ho
c is the cyclotron
quantum and EVHS is the energy of the Van Hove singularity at the merging
of four conical legs.

Fig. 2.3. The distribution of the Berry vector potential in bilayer graphene,
with the trigonal warping effects taken into account.
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For intermediate a the equations (2.116) can be solved numerically

(McCann & Falko, 2006; Mayorov et al., 2011). The results are shown in

Fig. 2.2.

Finally, we analyse the effects of trigonal warping on the Berry phase. One

can demonstrate by a straightforward calculation (Mikitik & Sharlai, 2008)

that each of the three side conical points contributes p to the Berry phase and the

central one contributes p, so the total Berry phase is 3p p¼ 2p, in agreement

with Eq. (2.111). One can also see straightforwardly that the winding number of

the transformation

Rx þ iRy

� �

� kx þ iky
� �2 þ a kx iky

� �

ð2:123Þ

is the same (two) as for Eq. (2.112).

The distribution of the Berry ‘vector potential’ ~
O

~k
� �

¼ i
�

n
�

�~r~k

�

�n
�

demonstrating singularities at four conical points is shown in Fig. 2.3.

2.7 A unified description of single-layer and bilayer graphene

Consider now the case of magnetic fields large enough that

Ej j � t?j j: ð2:124Þ

At these energies, a parabolic dispersion transforms to a conical one. Neglecting

the trigonal warping and using Eqs. (2.20) and (1.43), one has the 4	 4

Hamiltonian

Ĥ ¼
0 vp̂þ t? 0

vp̂ 0 0 0

t? 0 0 vp̂

0 0 vp̂þ 0

0

B

B

@

1

C

C

A

: ð2:125Þ

Using the operator (2.22) and dimensionless units (2.26) and introducing the

notation

t? ¼ G

2 ej jhBv2
c

r

; ð2:126Þ

one can represent the Schrödinger equation with the Hamiltonian (2.125) as

b̂c2 þ Gc3 ¼ ec1;

b̂þc1 ¼ ec2;

Gc1 þ b̂þc4 ¼ ec3;

b̂c3 ¼ ec4:

ð2:127Þ
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On excluding c4 and c2 from Eqs. (2.127), one obtains

1

e
b̂b̂þc1 þ Gc3 ¼ ec1;

Gc1 þ
1

e
b̂þb̂c3 ¼ ec3:

ð2:128Þ

One can see that ci are eigenfunctions of the operator n̂ ¼ b̂þb̂ whose eigen-

states are n¼ 0, 1, 2, . . . On replacing b̂þb̂ by n and b̂b̂þ by n þ1 in Eq. (2.128)

we find the eigenenergies en as

e2n ¼
G
2 þ 2nþ 1

2
� G

2 þ 2nþ 1

2

� �2

n nþ 1ð Þ

s

: ð2:129Þ

This formula (Pereira, Peeters & Vasilopoulos, 2007) gives a unified description

of Landau levels for the cases both of single-layer and of bilayer graphene

(without trigonal warping effects). On putting G¼ 0 we come to the case of two

independent layers, with

e2n ¼ nþ 1

2
� 1

2
; ð2:130Þ

which exactly coincides with Eq. (2.34). For large G (the case of relatively low

energies, Eq. (2.98)) we have

e2n1 ¼
nðnþ 1Þ

G
2

ð2:131Þ
and

e2n2 ¼ G
2 þ 2nþ 1: ð2:132Þ

Equation (2.131) gives the Landau levels for low-lying bands in the parabolic

approximation (1.46). The energies

en2 � � Gþ 1

G

nþ 1

2

� �� �

ð2:133Þ

following from Eq. (2.132) are nothing other than the Landau levels for two-

gapped bands in the parabolic approximation.

The condition G� 1 for which nonparabolic band effects in the Landau-

level spectrum of bilayer graphene become very important corresponds to

magnetic fields of the order of

Bc �
2

9

t?
t

� �2 hc

ej ja2 � 70T;
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which is too high to be attained in present-day experiments. However, even in

fields of 20 30T the effects of nonparabolicity should be quite noticeable.

2.8 Magnetic oscillations in single-layer graphene

Magneto-oscillation effects in quantized magnetic fields make possible one

of the most efficient ways to probe the electron-energy spectra of metals and

semiconductors (Schoenberg, 1984). The basis idea of the oscillations is quite

simple: since most of the properties are dependent on what happens in the

close vicinity of the Fermi level, whenever, on changing the magnetic induc-

tion or chemical potential m, one of the Landau levels coincides with the

Fermi energy, the properties should have some anomalies that repeat period-

ically as a function of the inverse magnetic field (the latter follows from the

semiclassical quantization condition (2.97), Dn � (1/B)DE). These anomalies

are smeared by temperature and disorder so, to observe the oscillations, one

needs, generally speaking, low temperatures and clean enough samples. It was

the observation of magneto-oscillation effects (Novoselov et al., 2005a;

Zhang et al., 2005) which demonstrated the massless Dirac behaviour of

charge carriers in graphene. Experimentally, oscillations of the conductivity

(the Shubnikov de Haas effect) were studied first; it is more difficult (but

quite possible, see later in this section) to observe the oscillations of thermo-

dynamic properties, e.g., magnetization (the de Haas van Alphen effect) in a

single layer of atoms. However, physics of these two effects is just the same, but

theoretical treatment of thermodynamic properties can be done in a more clear

and rigorous way. Here we will consider, following Sharapov, Gusynin & Beck

(2004), de Haas van Alphen magnetic oscillations for two-dimensional Dirac

fermions, i.e., for single-layer graphene.

The standard expression for the thermodynamic potential of the grand

canonical ensemble for noninteracting fermions with energies El is (Landau &

Lifshitz, 1980)

O ¼ �T
X

l

1þ exp
m� El

T

� �� �

¼ �T
ð

1

1

deN eð Þln
�

1þ exp

�

m� e

T

��

; ð2:134Þ

where

N eð Þ ¼
X

l

d e Elð Þ ð2:135Þ

is the density of states. However, one should be careful at this point since

statistical mechanics assumes that the energy spectrum is bounded from

below, which is not the case for the Dirac equation. One can either use a
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complete tight-binding Hamiltonian, where the spectrum is bound, and

analyse carefully the limit of the continuum model, or just write the answer

from considerations of relativistic invariance (Cangemi & Dunne, 1996). The

correct relativistic answer is

O ¼ T

ð

1

1

deN eð Þln 2 cosh
e m

2T

� �h i

; ð2:136Þ

which differs from Eq. (2.134) by the term

DO ¼ 1

2

ð

1

1

deN eð Þ e mð Þ: ð2:137Þ

This term is, in general, infinite and temperature-independent. If the spectrum

is symmetric, namely N( e)¼N(e) (which is necessary for relativistic invariant

theories), and the chemical potential is chosen in such a way that m¼ 0 for the

half-filled case (all hole states are occupied and all electron states are empty),

then the correction (2.137) vanishes in that situation.

The expression (2.136) is still not well defined, but its derivatives with

respect to m, temperature and magnetic field are convergent. For example,

the compressibility is proportional to the ‘thermodynamic density of states’

D mð Þ ¼ qn

qm
¼ q

2
O

qm2
¼
ð

1

1

deN eð Þ qf eð Þ
qe

� �

; ð2:138Þ

where f(e) is the Fermi function,

qf eð Þ
qe
¼ 1

4T cosh2
e m

2T

� � ; ð2:139Þ

and this expression is certainly well defined, with the difference between

Eqs. (2.134) and (2.136) becoming irrelevant. The quantity (2.138) is directly

measurable as the quantum capacitance (John, Castro & Pulfrey, 2004); for

the case of graphene, see Ponomarenko et al. (2010).

At zero temperature, the expression (2.138) is just a sum of delta-functional

contributions:

DT 0 mð Þ ¼ 4
F

F0

d Eð Þ þ
X

1

n 1

d E hoc n
p� �

þ d Eþ hoc n
p� �

" #

ð2:140Þ
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(see Eqs. (2.30), (2.31) and (2.51); we have taken into account a factor of 4

due to the valley and spin degeneracy). Using the identities

d E xð Þ þ d Eþ xð Þ ¼ 2 Ej jd E2 x2
� �

; ð2:141Þ

d Eð Þ ¼ dY Eð Þ
dE

ð2:142Þ

(Y(x> 0)¼ 1, Y(x< 0)¼ 0 is the step function) and

X

1

n 1

Y a xnð Þ ¼ Y að Þ 1

2
þ a

x
þ
X

1

k 1

sin 2pk
a

x

� �

pk

2

4

3

5; ð2:143Þ

one can find the closed expression

DT 0 mð Þ ¼ 4
F

F0

sgn mð Þ d
dm

m2

e2c
þ 1

p
tan 1 cot

2pm2

e2c

� �� �� 


; ð2:144Þ

where ec ¼ hoc (Sharapov, Gusynin & Beck, 2004). Equation (2.143) is the

partial case of the Poisson summation formula

X

1

n 1
d x nð Þ ¼

X

1

k 1
exp 2pikxð Þ ð2:145Þ

and, thus,

X

1

n 1

f nð Þ ¼
X

1

k 1

ð

1

a

dx f xð Þexp 2pikxð Þ ð2:146Þ

(0< a< 1) for any f(x), and the identity

X

1

n 1

sin pnxð Þ
n

¼ tan 1 sin pxð Þ
1 cos pxð Þ

� �

ð2:147Þ

is used when deriving (2.144).

To consider the case of finite temperatures, it is convenient to use the

expansion of qf(E )/qE into the Fourier integral:

qf Eð Þ
qE
¼
ð

1

1

dt

2p
exp i m Eð Þt½ �R tð Þ; ð2:148Þ
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where

R tð Þ ¼ pTt

sinh pTtð Þ½ � : ð2:149Þ

On substituting Eq. (2.148), together with Eqs. (2.141) and (2.142), into the

definition (2.138) one finds

D mð Þ ¼ 4
F

pF0

ðð

dE dtR tð Þexp i m� Eð Þt½ � Ej j 1

e2c
þ 2

e2c

X

1

k¼1
cos 2pk

E2

e2c

� �

" #

: ð2:150Þ

The sum over k describes oscillations of the thermodynamic density of

states. To proceed further, one can use the saddle-point method (or ‘the

method of steepest descent’) for integrals of strongly oscillating functions

(Fedoryuk, 1977). The procedure is the following. If we have a multidimen-

sional integral

I lð Þ ¼
ð

d nx f xð Þ exp ilF xð Þð Þ ð2:151Þ

with a large parameter l, then the main contribution follows from the

stationary point x0 of the phase F(x), where

qF

qxk
¼ 0; ð2:152Þ

since the oscillations are weakest in the vicinity of these points. On expanding

F(x) near x0,

F xð Þ � F x0ð Þ þ
1

2

X

kl

q
2
F

qxk qxl

� �

0

xk xk0ð Þ xl xl0ð Þ; ð2:153Þ

one finds

I lð Þ � f x0ð Þ
2pð Þn=2

Q

k

imkð Þ1=2
exp ilF x0ð Þ½ �; ð2:154Þ

where mk are eigenvalues of the matrix

q
2
F

qxk qxl

� �

:

If there is more than one stationary point their contributions are just

summed up.
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The oscillating part of the expression (2.150) can be estimated by this

method, choosing

F E; tð Þ ¼ m Eð Þt� 2pkE2

e2c
; ð2:155Þ

which gives us immediately

E0 ¼ m;

t0 ¼ �
4pkm

e2c
:

ð2:156Þ

Finally, one obtains

Dosc mð Þ � 8A mj j
ph2v2

X

1

k 1

zk

sinh zkð Þ cos
pkcm2

h ej jBv2
� �

; ð2:157Þ

where

z ¼ 2p2Tc mj j
h ej jBv2 ð2:158Þ

and A is the sample area. A formal condition of applicability of the saddle-

point method is that the resulting oscillations are fast enough; that is, the

argument of the cosine in Eq. (2.157) is much larger than 1.

Disorder will broaden Landau levels and smear the delta-functional peaks in

the density of states suppressing the oscillations. This effect too can be taken

into account (Sharapov, Gusynin & Beck, 2004; Ponomarenko et al., 2010).

A general semiclassical consideration for an arbitrary energy dispersion

law (the Lifshitz Kosevich theory; see Lifshitz, Azbel & Kaganov (1973) and

Abrikosov (1988)) leads to a similar temperature dependence of the oscilla-

tions, with

z ¼ 2p2Tcm


h ej jB ; ð2:159Þ

where

m
¼ 1

2p

qS Eð Þ
qE

�

�

�

�

E m

ð2:160Þ

is the effective cyclotron mass. For the massless Dirac fermions

m
 ¼ mj j
v2

; ð2:161Þ
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which is nothing other than the famous Einstein relation E¼mc2 with a

replacement of c by v. For two-dimensional systems, S ¼ pk2F / n, where n

is the charge-carrier concentration, and, thus, for massless Dirac fermions

one can expect

m
 � n
p

: ð2:162Þ

The experimental observation of this dependence (Novoselov et al.,

2005a; Zhang et al., 2005) was the first demonstration of the reality of

massless Dirac fermions in graphene (see Fig. 2.4). This gives us also a value
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n (1012 cm–2)

m
c
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0

Fig. 2.4. The concentration dependence of the cyclotron mass for charge
carriers in single-layer graphene; m0 is the free-electron mass (reproduced
with permission from Novoselov et al., 2005a).
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Fig. 2.5. Magnetic oscillations of the quantum capacitance (thermodynamic
density of states) as a function of the gate voltage (which is proportional to
the charge carrier concentration), for the magnetic field B¼ 16 T and various
temperatures (reproduced with permission from Ponomarenko et al., 2010).
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v� 106ms 1� c/300. Note that what was measured experimentally in these

works was the conductivity, not D(m), but the temperature dependence should

be the same. Oscillations ofD(m) were measured later via quantum capacitance

(Ponomarenko et al., 2010). They are well pronounced even at room tem-

perature (see Fig. 2.5); their broadening is determined by disorder effects.

2.9 The anomalous quantum Hall effect in single-layer and bilayer graphene

The anomalous character of the quantum Hall effect in single-layer

(Novoselov et al., 2005a; Zhang et al., 2005) and bilayer (Novoselov et al.,

2006) graphene is probably the most striking demonstration of the unusual

nature of the charge carriers therein. We do not need to present here a real

introduction to the theory of the quantum Hall effect in general (see Prange &

Girvin, 1987). However, it would seem useful to provide some basic infor-

mation, to emphasise the relation to the Berry phase and the existence of

topologically protected zero modes.

If we consider themotion of electrons in the crossed magnetic (~B) and electric

(~E) fields, the Lorentz force acting on an electron moving with a velocity~v is

~F ¼ e ~Eþ 1

c
~v	 ~B

� �

: ð2:163Þ

In the crossed fields, ~BjjOz and ~EjjOy, this will result in a steady drift of the

electrons along the x-axis with a velocity of

vx ¼ c
E

B
: ð2:164Þ

This effect results in the appearance of an off-diagonal (Hall) conductivity

proportional to the total electron concentration and inversely proportional to

the magnetic field:

sxy ¼
nec

B
: ð2:165Þ

The standard theory of the quantum Hall effect assumes that all the states

between Landau levels are localized due to disorder (Anderson localization),

see Fig. 2.6. This means that, if the Fermi energy lies between the Landau

levels, then only the states belonging to the occupied Landau levels contribute

to transport and the Hall conductivity is merely proportional to the number

of occupied levels N:

sxy ¼ Ngsgv
F

F0

1

A

nec

B
¼ gsgvN

e2

h
; ð2:166Þ
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where gs and gv are the spin and valley degeneracy factors (for graphene

gs¼ gv¼ 2) and we take into account Eq. (2.51) for the number of states per

Landau level. Thus, the Hall conductivity should have plateaux as a function

of the electron concentration: it remains constant and integer (in the units of

e2/h per valley per spin) when we pass from one occupied Landau level to the

next one.

However, in the case of graphene the zero-energy Landau level is equally

shared by electrons and holes. This means that when counting only electrons

(m> 0) or only holes (m< 0) it contains half as many states as do all other

Landau levels. Thus, instead of Eq. (2.166), one has

sxy ¼ gsgv Nþ 1

2

� �

e2

h
ð2:167Þ

(Novoselov et al., 2005a; Zhang et al., 2005; Schakel, 1991; Gusynin &

Sharapov, 2005; Castro Neto, Guinea & Peres, 2006). This is exactly the

behaviour observed experimentally (the half-integer quantum Hall effect).

For the case of bilayer graphene, the zero-energy level contains twice as many

states as for single-layer graphene, and the quantum Hall effect is integer, but,

in contrast with the case of a conventional electron gas, there is no plateau

at zero Fermi energy (Novoselov et al., 2006). These two cases are shown in

Fig. 2.7. Thus, the anomalous quantum Hall effect in graphene is related to

the existence of zero-energy modes and, thus, to the Atiyah Singer theorem.

Further understanding of geometrical and topological aspects of the anom-

alies can be attained within an approach developed by Thouless et al. (1982);

see also Kohmoto (1985, 1989). The main observation is that the Hall

conductivity can be represented in a form very similar to that for the Berry

holes electrons

D
(E

)

Fig. 2.6. A sketch of the density of states under quantum-Hall-effect condi-
tions in graphene. The zero-energy Landau level separates electron and hole
states and is equally shared by electrons and holes. Regions of localized and
extended states are shown in grey and white, respectively.
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phase. Actually, the work by Thouless et al. (1982) was done before that by

Berry (1984); the relation under discussion has been emphasized by Simon

(1983).

Let us consider, again, a general two-dimensional electron system in a

periodic potential plus uniform magnetic field (Section 2.1). One can prove

that, if the flux per elementary cell is rational (in units of the flux quantum),

the eigenstates of this problem can be rigorously characterized by the wave

vector ~k and considered as Bloch states in some supercell (for a formal

0

2

4

6

0

5

10

–4 –2

–3

–2

–1

0 2 4

0

1

2

3

–3.5

–2.5

–1.5

–0.5

0.5

1.5

2.5

3.5
12 T

n (1012 cm–2)

r
xx  

(kΩ) sxy  (4e2/h)

Fig. 2.7. The resistivity and Hall conductivity as functions of the charge-
carrier concentration in single-layer (top) and bilayer (bottom) graphene
(reproduced with permission from Novoselov et al., 2005a (top) and
Novoselov, 2006 (bottom)).
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discussion, see Kohmoto, 1985). We will label them as lj i ¼ n; ~k
�

�

�

E

; where n is

the band index.

We will use a linear response theory leading to a so-called Kubo formula

(Kubo, 1957). The Hall effect was first considered in this way by Kubo,

Hasegawa & Hashitsume (1959); for a detailed derivation and discussions,

see Ishihara (1971) and Zubarev (1974). For the single-electron case it can be

essentially simplified.

Let A be a one-electron operator that can be represented in a secondary

quantized form as

Â ¼
X

12

A12ĉ
þ
1 ĉ2 ð2:168Þ

(the numerical indices will label here electron states in some basis; ĉþi and ĉi
are fermionic creation and annihilation operators). Thus, its average over an

arbitrary state is

Â
� �

¼
X

12

A12 ĉþ1 ĉ2
� �

¼ T2 Âr̂
� �

; ð2:169Þ

where

r21 ¼ ĉþ1 ĉ2
� �

ð2:170Þ

is the single-electron density matrix. For noninteracting electrons, the

Hamiltonian of the system has the same form:

Ĥ ¼
X

12

H12ĉ
þ
1 ĉ2; ð2:171Þ

and, using the commutation relation

ĉþ1 ĉ2; ĉ
þ
3 ĉ4

	 


¼ d23ĉ
þ
1 ĉ4 d14ĉ

þ
3 ĉ2; ð2:172Þ

one can prove that the density matrix r̂ satisfies the communication relations

ih
qr̂

qt
¼ Ĥ; r̂
	 


; ð2:173Þ

where the matrix multiplication is performed in the single-particle space, e.g.,

Ĥr̂
� �

12
¼
X

3

H13r32: ð2:174Þ

Let Ĥ tð Þ ¼ Ĥ0 þ V̂ tð Þ, where Ĥ0 is diagonal (Ei are its eigenenergies) and V̂ tð Þ
is a small perturbation depending on time as exp( iotþ dt)jd!þ0. Then, the
correction to the density matrix, r̂ 0 exp iotþ dtð Þ; is given by the expression

(see Vonsovsky & Katsnelson, 1989)
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r 012 ¼
f1 f2

E2 E1 þ h oþ idð ÞV12; ð2:175Þ

where fi¼ f(Ei) is the Fermi function and the perturbation of an observable A

is dAexp( iotþ dt), where

dA ¼ Tr Âr̂0
� �

¼
X

12

f1 f2

E2 E1þ h oþ idð ÞV12A21: ð2:176Þ

To calculate the Hall conductivity one has to consider a perturbation

V ¼ e~r~E; ð2:177Þ
where ~E is the electric field, the coordinate operator is

~r ¼ i ~r~k ð2:178Þ

(see Vonsovsky & Katsnelson, 1989) and the current operator is

~̂j ¼ e
d~̂r

dt
¼ ie

h
Ĥ;~̂r
h i

: ð2:179Þ

Using the identity (2.84) and restricting ourselves to the static case only

(o¼ Z¼ 0), one finds, for the case T = 0,

sH ¼
2e2

Ah
Im

ð

d~k

2pð Þ2
X

Em<m

X

En>m

�

m
�

�

qH=qkx
�

�n
��

n
�

�

qH=qky
�

�m
�

En Emð Þ2
; ð2:180Þ

where the integral is taken over the Brillouin zone of the magnetic supercell.

This is exactly the same expression as in Eq. (2.86), and, thus, as in Eq. (2.82).

Using Stokes’ theorem one can represent Eq. (2.180) as a contour integral

over the boundary of the Brillouin zone:

sH ¼
e2

2ph
Im
X

occ

n

þ

d~k
�

n
�

�~r~k

�

�n
�

; ð2:181Þ

where the sum is taken over all occupied bands. The contour integral gives us

the change of the phase of the state jni when rotating by 2p in ~k-space. If all

the states are topologically trivial (i.e., there is no Berry phase) all these

changes should be integer (in the units of 2p), and, thus, Eq. (2.181) gives

us the quantization of the Hall conductivity (2.166). In the case of graphene,

the Berry phase p should be added, which changes the quantization condition

to Eq. (2.167).

The real situation is more complicated since the consideration by Thouless

et al. (1982) does not take into account disorder effects, in particular, Anderson
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localization, which are actually crucial for a proper understanding of the

quantum Hall effect. A more complete mathematical theory requires the use

of noncommutative geometry (Bellissard, van Elst & Schulz-Balders, 1994)

and is too complicated to review here. Keeping in mind the case of graphene,

it was demonstrated by Ostrovsky, Gornyi & Mirlin (2008) that, actually, the

quantum Hall effect can be either anomalous (half-integer) or normal (inte-

ger) depending on the type of disorder. Short-range scatterers induce a strong

mixture of the states from different valleys and restore the ordinary (integer)

quantum Hall effect. Of course, this is beyond the ‘Dirac’ physics which is

valid assuming that the valleys are essentially independent.

The cyclotron quantum (2.31) in graphene is much higher than in most

semiconductors. The energy gap between the Landau levels with n¼ 0 and

n¼ 1 is DE� 2800 K for the largest currently available permanent magnetic

fields, B¼ 45 T (DE� 1800 K for B¼ 20 T). This makes graphene a unique

system exhibiting the quantum Hall effect at room temperature (Novoselov

et al., 2007).

Here we discuss only the background to quantumHall physics in graphene.

The real situation is much more complicated, both theoretically (involving the

role of disorder and electron electron interactions) and experimentally

(Zhang et al., 2006; Jiang et al., 2007b; Giesbers et al., 2007; Checkelsky,

Li & Ong, 2008; Giesbers et al., 2009). In particular, at high enough magnetic

fields the spin and, probably, valley degeneracies are destroyed and addi-

tional plateaux appear, in addition to the fact that the gap opens at n¼ 0.

The nature of these phenomena is still controversial. Last, but not least, the

fractional quantum Hall effect has been observed for freely suspended gra-

phene samples (Du et al., 2009; Bolotin et al., 2009). This is an essentially

many-body phenomenon (Prange & Girvin, 1987). We will come back to the

physics of the quantum Hall effect in graphene many times in this book.

2.10 Effects of smooth disorder and an external electric

field on the Landau levels

In reality, all Landau levels are broadened due to disorder. If the latter can be

described by a scalar potential V(x, y) that is smooth and weak enough the

result will be just a modulation of the Landau levels by this potential,

En x; yð Þ � En þ V x; yð Þ ð2:182Þ

(Prange & Girvin, 1987). The weakness means that

V x; yð Þj j � hoc ð2:183Þ
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and the smoothness means that a typical spatial scale of V(x, y) is large

in comparison with the magnetic length (2.1). The calculations for the

case of graphene are especially simple and transparent if one assumes a

one-dimensional modulation, such that V is dependent only on the y-

coordinate (Katsnelson & Novoselov, 2007). Thus, instead of Eq. (2.37)

one has

q

qx

x

l2B
i
q

qy

� �

c2 ¼
iE

hv
c1

iV yð Þ
hv

c1;

q

qx
þ x

l2B
þ i

q

qy

� �

c1 ¼
iE

hv
c2

iV yð Þ
hv

c2:

ð2:184Þ

We can try the solutions of Eq. (2.184) as an expansion in the basis of the

solutions (2.45) of the unperturbed problem (V¼ 0):

ci x; yð Þ ¼
X

1

n 0

ð

1

1

dky

2p
c ið Þ
n ky
� �

exp ikyy
� �

AnDn

2
p

x l2Bky
� �

lB

 !

; ð2:185Þ

where An is the normalization factor (the basis functions are supposed to be

normalized with respect to unity).

After straightforward calculations, one obtains a set of equations for the

expansion coefficients c
ið Þ
n ky
� �

:

� 2
p

lB
1� dn;0
� �

c 2ð Þ
n ky
� �

¼ iE

hv
c 1ð Þ
n ky
� �

� i

hv

X

1

n 0¼0

ð

1

1

dqy

2p
v ky � qy
� �

c
1ð Þ
n 0 qy
� �

n; ky
�

�n 0; qy
� �

;

2
p

lB
1þ nð Þc 1ð Þ

n ky
� �

¼ iE

hv
c 2ð Þ
n ky
� �

� i

hv

X

1

n 0¼0

ð

1

1

dqy

2p
v ky � qy
� �

c
2ð Þ
n 0 qy
� �

n; kyjn 0; qy
� �

;

ð2:186Þ

where v(q) is a Fourier component of V(y),

n; kyjn 0; qy
� �

¼ AnAn 0

ð

1

1

dxDn

2
p

x� l 2Bky
� �

lB

 !

Dn 0
2
p

x� l 2Bqy
� �

lB

 !

: ð2:187Þ

If the potential is smooth and weak enough, one can use the adiabatic

approximation and neglect the terms with n0 6¼ n in Eq. (2.186) describing

transitions between the Landau levels. Then,
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1 dn;0
� �

~c 2ð Þ
n ky
� �

¼ iec 1ð Þ
n ky
� �

i

ð

1

1

dqy

2p
v ky qy
� �

n; ky jn; qy
� �

c 1ð Þ
n qy
� �

;

nc 1ð Þ
n ky
� �

¼ ie~c 2ð Þ
n ky
� �

i

ð

1

1

dqy

2p
v ky qy
� �

n; kyjn; qy
� �

~c 2ð Þ
n qy
� �

;

ð2:188Þ

where ~c
2ð Þ
n ¼ c

2ð Þ
n 1 and we use a dimensionless energy (2.26). For n¼ 0, the

components 1 and 2 are decoupled and we have

ec ky
� �

¼
ð

1

1

dqy

2p
v ky qy
� �

exp
l 2B
4

ky qy
� �2

� �

c qy
� �

; ð2:189Þ

where c is either c
1ð Þ
0 or ~c

2ð Þ
0 and we calculate explicitly h0, kyj0, qyi.

Coming back to real space,

c ky
� �

¼
ð

1

1

dy exp ikyy
� �

c ky
� �

; ð2:190Þ

one can transform Eq. (2.189) to the form

e ~V yð Þ
� �

c yð Þ ¼ 0; ð2:191Þ

where

(2.192)

~V yð Þ ¼ 1

hoc

ð

1

1

dqy

2p
v qy
� �

exp
l 2B
4

q2y þ iqyy
� �

� �

¼ 1

hoc

ð

1

1

dy 0V y 0ð Þ 1

p
p

lB
exp

y y 0ð Þ2
l2B

" #

is a convolution of the potential V(y) with the ground-state probability

density of a harmonic oscillator. If the potential is smooth in comparison

with lB, then ~V yð Þ � V yð Þ.
Equation (2.191) has solutions

c yð Þ ¼ d y Yð Þ;
e ¼ ~V Yð Þ;

ð2:193Þ

which means that the zero-energy Landau level broadens via just a modulation

by the scalar potential. However, a random vector potential does not broaden

60 Electron states in a magnetic field

              

       



the zero-energy level, due to the index theorem (Section 2.3). All other Landau

levels are broadened both by scalar and by vector potentials. For a scalar

potential only, one has in general

En Yð Þ � hvF

lB
2n
p

¼ V Yð Þ: ð2:194Þ

There is some experimental evidence that the zero-energy Landau levels in

graphene are narrower than the other ones (Giesbers et al., 2007). The most

natural explanation is that there exist random pseudomagnetic fields in

graphene due to ripples (corrugations) (Morozov et al., 2006). The origin of

these pseudomagnetic fields will be discussed later, in Chapter 10.

For the case of a constant electric field E,

V xð Þ ¼ eEx; ð2:195Þ

the problem has a beautiful exact solution that is based on relativistic invari-

ance of the Dirac equation (Lukose, Shankar & Baskaran, 2007). The Lorentz

transformation

y 0 ¼ y bvt

1 b2
q ; t 0 ¼ t by=v

1 b2
q ð2:196Þ

corresponding to the coordinate system moving with the velocity bv, with

b< 1 (we remind the reader that for our Dirac equation v plays the role of the

velocity of light), changes the electric field ~EjjOy and magnetic field ~BjjOz

according to

E 0 ¼
E b

vB

c

1 b2
q ;

vB 0

c
¼

vB

c
bE

1 b2
q ð2:197Þ

(Jackson, 1962). This means that, if the electric field is weak enough,

E <
v

c
B; ð2:198Þ

it can be excluded by the Lorentz transformation with

b
 ¼ cE

vB
: ð2:199Þ

In the opposite case

E >
v

c
B

one can, vice versa, exclude the magnetic field, see Shytov et al. (2009).
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Thus, the effective magnetic field is

Beff ¼ B 1 b
2
q

: ð2:200Þ

As a result, the energy spectrum of the problem is (Lukose, Shankar &

Baskaran, 2007)

En ky
� �

¼ �hoc n
p

1 b
2
� �3=4

hvb
ky: ð2:201Þ

The distances between Landau levels are decreased by the factor (1 b
2)3/4.

The last term in Eq. (2.201) (as well as the additional factor 1 b
2
q

in the

first term) is nothing other than the result of Lorentz transformation of

energy and momentum. It transforms the Landau levels into Landau bands,

in qualitative agreement with Eq. (2.194).
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3

Quantum transport via evanescent waves

3.1 Zitterbewegung as an intrinsic disorder

The Berry phase, the existence of a topologically protected zero-energy level

and the anomalous quantum Hall effect are striking manifestations of the

peculiar, ‘ultrarelativistic’ character of charge carriers in graphene.

Another amazing property of graphene is the finite minimal conductivity,

which is of the order of the conductance quantum e2/h per valley per spin

(Novoselov et al., 2005a; Zhang et al., 2005). Numerous considerations of the

conductivity of a two-dimensional massless Dirac fermion gas do give us this

value of the minimal conductivity with an accuracy of some factor of the

order of one (Fradkin, 1986; Lee, 1993; Ludwig et al., 1994; Nersesyan,

Tsvelik & Wenger, 1994; Ziegler, 1998; Shon & Ando, 1998; Gorbar et al.,

2002; Yang & Nayak, 2002; Katsnelson, 2006a; Tworzydlo et al., 2006; Ryu

et al., 2007).

It is really surprising that in the case of massless two-dimentional Dirac

fermions there is a finite conductivity for an ideal crystal, that is, in the

absence of any scattering processes (Ludwig et al., 1994; Katsnelson, 2006a;

Tworzydlo et al., 2006; Ryu et al., 2007). This was first noticed by Ludwig

et al. (1994) using a quite complicated formalism of conformal field theory

(see also a more detailed and complete discussion in Ryu et al., 2007). After

the discovery of the minimal conductivity in graphene (Novoselov et al.,

2005a; Zhang et al., 2005) I was pushed by my experimentalist colleagues to

give a more transparent physical explanation of this fact, which has been

done in Katsnelson (2006a) on the basis of the concept of Zitterbewegung

(Schrödinger, 1930) and the Landauer formula (Beenakker & van Houten,

1991; Blanter & Büttiker, 2000). The latter approach was immediately

developed further and used to calculate the shot noise (Tworzydlo et al.,

2006), which turns out to be similar to that in strongly disordered metals
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(a ‘pseudodiffusive transport’). There are now more theoretical (Prada et al.,

2007; Katsnelson & Guinea, 2008; Rycerz, Recher & Wimmer, 2009; Schuessler

et al., 2009; Katsnelson, 2010a) and experimental (Miao et al., 2007; Danneau

et al., 2008; Mayorov et al., 2011) works studying this regime in the context of

graphene. This situation is very special. For a conventional electron gas in

semiconductors, in the absence of disorder, the states with definite energy

(eigenstates of the Hamiltonian) can be simultaneously the states with definite

current (eigenstates of the current operator) and it is the disorder that results

in the non-conservation of the current and finite conductivity. In contrast, for

the Dirac fermions the current operator does not commute with the

Hamiltonian (‘Zitterbewegung’) which can be considered as a kind of intrinsic

disorder (Katsnelson, 2006a; Auslender & Katsnelson, 2007). Therefore, a

more detailed understanding of the pseudodiffusive transport in graphene is

not only important for physics of graphene devices but also has a great

general interest for quantum statistical physics and physical kinetics.

The Zitterbewegung is a quantum relativistic phenomenon that was first

discussed by Schrödinger as early as in 1930 (Schrödinger, 1930). Only very

recently was it observed experimentally for trapped ions (Gerritsma et al.,

2010). This phenomenon seems to be important if one wishes to understand

qualitatively the peculiarities of electron transport in graphene at small

doping (Katsnelson, 2006a; Auslender & Katsnelson, 2007). Other aspects

of the Zitterbewegung in graphene physics, in particular, possibilities for its

direct experimental observation, are discussed by Cserti & Dávid (2006) and

Rusin & Zawadzki (2008, 2009). Here we will explain this basic concept for

the case of two-dimensional massless Dirac fermions. In a secondary quant-

ized form, the Dirac Hamiltonian reads

Ĥ ¼ v
X

~p

Ĉ
þ
~p s~p Ĉ~p ð3:1Þ

and the corresponding expression for the current operator is

~̂j ¼ ev
X

~p

Ĉ
þ
~p sĈ~p ¼

X

~p

~̂j~p; ð3:2Þ

where ~p is the momentum and Ĉ
þ
~p ¼ ĉ

þ
~p1 ; ĉ

þ
~p2

� �

are pseudospinor electron-

creation operators. The expression (3.2) follows from Eq. (3.1) and the gauge

invariance, which requires (Abrikosov, 1998)

~̂j ¼ dĤ

d~p
: ð3:3Þ
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Here we omit spin and valley indices (so, keeping in mind applications to

graphene, the results for the conductivity should be multiplied by 4 due to

there being two spin projections and two conical points per Brillouin zone).

Straightforward calculations give for the time evolution of the electron oper-

ators C tð Þ ¼ exp iĤt
� �

C exp iĤt
� �

(here we will put h ¼ 1)

Ĉ~p tð Þ ¼ 1

2
exp ie~pt
� �	 


1þ~ps

p

� �

þ exp ie~pt
� �	 


1
~ps

p

� �� 


Ĉ~p ð3:4Þ

and for the current operator

~̂j tð Þ ¼ ~̂j0 tð Þ þ ~̂j1 tð Þ þ ~̂j
þ

1 tð Þ;

~̂j0 tð Þ ¼ ev
X

~p

Ĉ
þ
~p

~p ~psð Þ
p2

Ĉ~p;

~̂j1 tð Þ ¼ ev

2

X

~p

Ĉ~p
þ

s
~p ~psð Þ
p2
þ i

p
s	~p

� �

Ĉ~p exp 2ie~pt
� �

;

ð3:5Þ

where e~p ¼ vp is the particle energy. The last term in Eq. (3.5) corresponds to

the Zitterbewegung.

Its physical interpretation is usually given in terms of the Landau Peierls

generalization of the Heisenberg uncertainty principle (Landau & Peierls, 1931;

Berestetskii, Lifshitz & Pitaevskii, 1971; Davydov, 1976). Attempts to measure

the coordinate of a relativistic particle with a very high accuracy require an

amount of energy that is sufficient to create particle antiparticle pairs and,

thus, we will inevitably lose our initial particle, being unable to distinguish it

from one of the created particles (according to quantum statistics, all the

particles are equivalent). This pair creation corresponds to the oscillating

terms with frequency 2e~p in Eq. (3.5).

In terms of condensed-matter physics, the Zitterbewegung is nothing other

than a special kind of interband transition with the creation of virtual

electron hole pairs. The unitary transformation generated by the operator

(1.29) diagonalizes the Hamiltonian and thus introduces electron and hole

states with the energies �vp; after this transformation the oscillating term in

Eq. (3.5) obviously corresponds to the interband transitions, e.g.,

Uþ~p jx~pU~p ¼ ev
�cosf~p �i sinf~p exp �if~p þ 2ie~pt

� �

i sinf~p exp if~p � 2ie~pt
� �

cosf~p

0

@

1

A: ð3:6Þ

To calculate the conductivity s(o) one can try first to use the Kubo formula

(Kubo, 1957) which reads, for the two-dimensional isotropic case,
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s oð Þ ¼ 1

A

ð

1

0

dt exp iotð Þ
ð

b

0

dl ~̂j t ilð Þ~̂j
D E

; ð3:7Þ

where b¼T 1 is the inverse temperature and A is the sample area. In the

static limit o¼ 0, taking into account the Onsager relations and the analyti-

city of the correlations ~̂j zð Þ~̂j
D E

for b< Im z� 0 (Zubarev, 1974), one has

s ¼ b

2A

ð

1

1

dt ~̂j tð Þ~̂j
D E

: ð3:8Þ

Usually, for ideal crystals, the current operator commutes with the Hamiltonian

and thus~̂j tð Þ does not dependon time. In that case, due toEq. (3.7), the frequency-

dependent conductivity in the ground state contains only the Drude peak

sD oð Þ ¼ p

A
lim
T!0

~̂j
2

D E

T
d oð Þ: ð3:9Þ

Either the spectral weight of the Drude peak is finite and, thus, the static

conductivity is infinite, or it is equal to zero. It is easy to check that for the

systemunder consideration the spectral weight of theDrude peak is proportional

to the modulus of the chemical potential jmj and thus vanishes at zero doping

(m¼ 0). It is the Zitterbewegung, i.e., the oscillating term ~̂j1 tð Þ, which is respon-

sible for the nontrivial behaviour of the conductivity for zero temperature and

zero chemical potential. A straightforward calculation gives the formal result

s ¼ pe2

h

ð

1

0

de ed2 eð Þ; ð3:10Þ

where one delta-function originates from the integration over t in Eq. (3.8)

and the second one from the derivative of the Fermi distribution function

appearing in the calculation of the average over the product of Fermi oper-

ators. Of course, the square of the delta-function is not a well-defined object

and thus Eq. (3.10) is meaningless before specification of how one should

regularize the delta-functions. After regularization the integral in Eq. (3.10) is

finite, but its value depends on the regularization procedure (for a detailed

discussion of this uncertainty, see Ryu et al., 2007). Although this derivation

cannot give us a correct numerical factor, it opens a new path to qualitative

understanding of more complicated situations. For example, the minimal

conductivity of the order of e2/h per channel has been observed experimentally

also for bilayer graphene (Novoselov et al., 2006), with an energy spectrum
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drastically different from that for the single-layer case. Bilayer graphene is a

zero-gap semiconductor with parabolic touching of the electron and hole

bands described by the single-particle Hamiltonian (1.46). The Hamiltonian

can be diagonalized by the unitary transformation U~p with the replacement

f~p ! 2f~p. Thus, the current operator after the transformation takes the

form (3.6) with the replacements v! p/m and expð if~pÞ ! expð 2if~pÞ.
In contrast with the single-layer case, the density of electron states for the

Hamiltonian (1.46) is finite at zero energy but the square of the current is, vice

versa, linear in energy. As a result, we have the same estimate as Eq. (3.10).

3.2 The Landauer-formula approach

A deeper understanding of the origin of finite conductivity without charge

carriers can be reached using the Landauer-formula approach (Beenakker &

van Houten, 1991; Blanter & Büttiker, 2000). Following Katsnelson (2006a)

we consider the simplest possible geometry, choosing the sample as a ring of

length Ly in the y-direction; we will use the Landauer formula to calculate the

conductance in the x-direction (see Fig. 3.1). As we will see, the conductivity

turns out to be dependent on the shape of the sample. To have a final

transparency we should keep Lx finite. On the other hand, periodic boundary

conditions in the y-direction are nonphysical and we have to choose Ly as large

as possible in order to weaken their effects. Thus, for the two-dimensional

situation one should choose Lx�Ly.

In the coordinate representation the Dirac equation at zero energy takes

the form

@

@x
þ i

@

@y

� �

c1 ¼ 0;

@

@x
i
@

@y

� �

c2 ¼ 0:

ð3:11Þ

Ly

Lx

y

x

yt(x)

yb(x)

Fig. 3.1. The geometry of the sample. The thick arrow shows the direction of
the current. Solid and dashed lines represent wave functions of the edge states
localized near the top (ct(x)) and bottom (cb(x)) of the sample, respectively.
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General solutions of these equations are just arbitrary analytic (or complex-

conjugated analytic) functions:

c1 ¼ c1 xþ iyð Þ;
c2 ¼ c2 x iyð Þ:

ð3:12Þ

Owing to periodicity in the y-direction both wave functions should be pro-

portional to exp(ikyy), where ky¼ 2pn/Ly, n¼ 0, �1, �2, . . . This means

that the dependence on x is also fixed: the wave functions are proportional

to exp(�2pnx/Ly). They correspond to the states localized near the bottom

and top of the sample (see Fig. 3.1).

To use the Landauer formula, we should introduce boundary conditions at

the sample edges (x=0 and x=Lx). To be specific, let us assume that the leads

are made of doped graphene with the potential V0< 0 and the Fermi energy

EF¼ vkF¼ V0. The wave functions in the leads are supposed to have the same

y-dependence, namely c1,2(x, y)¼c1,2(x)exp(ikyy). Thus, one can try the solu-

tionof theDirac equation in the following form that is consistentwithEq. (1.30):

c1 xð Þ ¼

exp ikxxð Þ þ r exp ikxxð Þ; x< 0;

a exp kyx
� �

; 0<x<Lx;

t exp ikxxð Þ; x > Lx;

8

>

>

<

>

>

:

c2 xð Þ ¼

exp ikxxþ ifð Þ r exp ikxx ifð Þ; x< 0;

b exp kyx
� �

; 0<x<Lx;

t exp ikxxþ ifð Þ; x > Lx;

8

>

>

<

>

>

:

ð3:13Þ

where sin f¼ ky/kF and kx ¼ k2F k2y

q

. From the conditions of continuity of

the wave functions, one can find the transmission coefficient

Tn ¼ t ky
� ��

�

�

�

2 ¼ cos2f

cosh2 kyLx

� �

sin2f
: ð3:14Þ

Further, one should assume that kF Lx� 1 and put f ffi 0 in Eq. (3.14), so

Tn ¼
1

cosh2 kyLx

� � : ð3:15Þ

The conductance G (per spin per valley) and Fano factor F of the shot noise

(Blanter & Büttiker, 2000) are expressed via the transmission coefficients (3.15):

G ¼ e2

h

X

1

n 1
Tn ð3:16Þ
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and

F ¼ 1

P

1

n 1
T 2
n

P

1

n 1
Tn

: ð3:17Þ

Note that in the ballistic regime, where the transmission probability for a

given channel is either one or zero, F¼ 0 (the current is noiseless), whereas if

all Tn� 1 (e.g., current through tunnel junctions) F� 1.

Thus, the trace of the transparency, which is just the conductance (in units

of e2/h), is

TrT ¼
X

1

n 1

1

cosh2 kyLx

� � ffi Ly

pLx

: ð3:18Þ

Assuming that the conductance is equal to s Ly/Lx one finds a contribution to

the conductivity per spin per valley equal to e2/(ph) (Katsnelson, 2006a;

Tworzydlo et al., 2006). This result seems to be confirmed experimentally

(Miao et al., 2007; Mayorov et al., 2011). Note also that for the case of

nanotubes (Lx�Ly) one has a conductance e2/h per channel, in accordance

with known results (Tian & Datta, 1994; Chico et al., 1996).

For the Fano factor one has

F ¼ 1

3
ð3:19Þ

(Tworzydlo et al., 2006). This result is very far from the ballistic regime and

coincides with that for strongly disordered metals (Beenakker & Büttiker,

1992; Nagaev, 1992). This means that, in a sense, the Zitterbewegung works as

an intrinsic disorder.

Instead of periodic boundary conditions in the y-direction, one can

consider closed boundaries with zigzag-type or infinite-mass boundary con-

ditions (we will discuss these later). The result (Tworzydlo et al., 2006) is just

a replacement of the allowed values of the wave vectors in Eq. (3.15). One can

write, in general (Rycerz, Recher & Wimmer, 2009),

ky nð Þ ¼ gp nþ gð Þ
Ly

; ð3:20Þ

where g¼ 1 and g ¼ 1
2
for closed boundary conditions and g¼ 2 and g¼ 0 for

periodic boundary conditions. The results (3.18) and (3.19) for the case

Lx�Ly remain the same.

The case of bilayer graphene (Katsnelson, 2006b; Snyman & Beenakker,

2007; Cserti, Csordás & Dávid, 2007) is more subtle. Even if we neglect the

trigonal warping and use the Hamiltonian (1.46), an additional spatial scale
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l? ¼
hv

t?
� 10a ð3:21Þ

arises in the problem (Snyman & Beenakker, 2007), and the results for the

conductance and the Fano factor depend on the sequence of the limits

Lx=l?!1 and EF! 0. Moreover, when we cross the energy of trigonal

warping and kF satisfies the inequality (1.55), all four conical points work

and the results are changed again (Cserti, Csordás & Dávid, 2007).

3.3 Conformal mapping and Corbino geometry

Thus, electron transport in undoped graphene is due to zero modes of the

Dirac operator, which are represented by analytic functions of z=xþ iy

determined by boundary conditions. For the geometry shown in Fig. 3.1

these functions are just exponents:

c1n zð Þ ¼ exp
2pnz

Ly

� �

; ð3:22Þ

so a generic wave function inside a graphene flake can be written as

C x; yð Þ �
X

1

n 1
an

exp
2pnz

Ly

� �

0

0

@

1

Aþ bn

0

exp
2pnz

Ly

� �

0

@

1

A

2

4

3

5; ð3:23Þ

where the coefficients an and bn are determined by the boundary conditions.

Let the Fermi wavelength in the leads be much smaller than the geometrical

lengths of the flake. Then, for most of the modes one can write the boundary

conditions assuming normal incidence, f¼ 0:

cin �
1þ r

1 r

� �

;

cout �
t

t

� �

;

ð3:24Þ

where subscripts ‘in’ and ‘out’ label the values of the wave functions at the

boundaries between the leads and the sample. In this approximation it is very

easy to solve the problem of electron transport through a graphene quantum

dot of arbitrary shape using a conformal mapping of this shape to the strip

(Katsnelson & Guinea, 2008; Rycerz, Recher & Wimmer, 2009). For example,

the mapping

w zð Þ ¼ R1 exp
2pz

Ly

� �

ð3:25Þ
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with

exp
2pLx

Ly

� �

¼ R2

R1

transforms the rectangular strip Lx	Ly into a circular ring with inner and

outer radii R1 and R2, respectively. Indeed, for z=x+ iy, with 0< x<Lx and

0< y<Ly, the transformation (3.25) leads to 0� arg w< 2p and R1� jwj �R2.

Instead of Eq. (3.23) one can try in this case

C x; yð Þ �
X

1

n 1
an

zn

0

� �

þ bn
0

zn

� �� �

: ð3:26Þ

The conformal mapping allows us to find immediately the solution for

Corbino geometry where ‘in’ and ‘out’ leads are attached to the inner and

outer edges of the ring, respectively (see Fig. 3.2); in this case periodic

boundary conditions in the y-direction should naturally be used. Moreover,

the solution of the problem for any shape of the flake that is topologically

equivalent to the ring can be written automatically in terms of the

corresponding conformal mapping (Rycerz, Recher &Wimmer, 2009). Earlier

(Katsnelson & Guinea, 2008) this method was applied to the case of graphene

quantum dots with thin leads attached.

If we just repeat the derivation of Eq. (3.15) using the boundary conditions

(3.24), one can see that

cosh kyLx

� �

¼ 1

2
exp kyLx

� �

þ exp kyLx

� �	 


¼ 1

2

c1 x ¼ Lxð Þ
c1ðx ¼ 0Þ þ

c1ðx ¼ 0Þ
c1 x ¼ Lxð Þ

� �

ð3:27Þ

Fig. 3.2. The Corbino geometry: radial electric current in the ring.
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and

c1 x ¼ Lxð Þ
c1ðx ¼ 0Þ ¼

c2ðx ¼ 0Þ
c2 x ¼ Lxð Þ : ð3:28Þ

Under the conformal mapping (3.25)

c1 x ¼ Lxð Þ
c1ðx ¼ 0Þ ¼ exp

2pLx

Ly

� �

! c1ðr ¼ R2Þ
c1 r ¼ R1ð Þ ¼

R2

R1

ð3:29Þ

and the result for the transmission coefficient reads

Tn ¼
4

R2

R1

� �n

þ R1

R2

� �n : ð3:30Þ

We should be careful, however, since up to nowwe have not taken into account

the Berry phase p for massless Dirac fermions. When we pass along the circle

within the disc we have not periodic but antiperiodic boundary conditions:

c1 wj j; argwð Þ ¼ c1 wj j; argwþ 2pð Þ; ð3:31Þ
which means that n in (3.30) should be replaced by nþ 1

2
. Finally, one has

(Rycerz, Recher & Wimmer, 2009)

Tj ¼
1

cosh2 j ln
R2

R1

� �� � ; j ¼ � 1

2
;� 3

2
;� 5

2
; . . . ð3:32Þ

and the summation over integer n in Eqs. (3.16) and (3.17) should be replaced by

a summation over half-integer j. For a ring that is thin enough, jR2 R1j�R1,

the result is

G � 2e2

h

1

ln
R2

R1

� � ; F � 1

3
: ð3:33Þ

This agrees with the result (3.18) if we take into account that the thin ring

is equivalent to the rectangular strip with Lx=R2 R1 and Ly = 2pR1. In the

opposite limit R1�R2 one has

G � 8e2

h

R1

R2

; F � 1 G
h

8e2
: ð3:34Þ

Thus, for zero doping, the conductance of a graphene flake of arbitrary shape

can be found without explicit solution of Dirac equation, by a conformal

mapping to a rectangle.
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3.4 The Aharonov–Bohm effect in undoped graphene

The Aharonov Bohm effect (Aharonov & Bohm, 1959; Olariu & Popescu,

1985) is the shift of interference patterns from different electron trajectories

by the magnetic flux through the area between the trajectories. This leads to

oscillations of observable quantities such as conductance as a function of the

magnetic flux. The Aharonov Bohm effect in graphene has been studied both

theoretically (Recher et al., 2007; Jackiw et al., 2009; Wurm et al., 2010;

Katsnelson, 2010a; Rycerz, 2010) and experimentally (Russo et al., 2008;

Huefner et al., 2009) for the case of a finite doping. It is not clear a priori

whether this effect is observable or not in undoped graphene, where the

transport is determined by evanescent waves. The analysis of Katsnelson

(2010a) and Rycerz (2010) shows that, whereas for the case of very thin rings

the Aharonov Bohm oscillations are exponentially small, for a reasonable

ratio of radii, such as, e.g., R2/R1¼ 5, the effect is quite observable.

By combining the conformal-mapping techniquewith a general consideration

of zero-energy states for massless Dirac fermions one can derive simple and

general rigorous formulas for any graphene flakes topologically equivalent

to the ring, avoiding both numerical simulations and explicit solutions of

the Schrödinger equation for some particular cases (Katsnelson, 2010a).

Note that for the case of a circular ring and a constant magnetic field the

problem can be solved exactly for any doping (Rycerz, 2010), but, of course,

the mathematics required is much more cumbersome. In the corresponding

limits, the results are the same.

The effect of magnetic fields on the states with zero energy can be considered

by employing the method of Aharonov & Casher (1979) (see Section 2.3).

The general solutions have the form (2.62), where f1 and f1 are analytic and

complex-conjugated analytic functions. The boundary conditions following

from Eq. (3.24) are

1þ r ¼ c
1ð Þ
þ ;

1 r ¼ c 1ð Þ;

t ¼ c
2ð Þ
þ ;

t ¼ c 2ð Þ;

ð3:35Þ

where superscripts 1 and 2 label the boundaries attached to the corresponding

leads.

If the boundary of the sample is simply connected, one can always choose

j¼ 0 at the boundary and, thus, the magnetic fields disappear from

Eqs. (3.35); this fact was used by Schuessler et al. (2009) as a very elegant
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way to prove that a random vector potential has no effect on the value of the

minimal conductivity. Further, we will consider a ring where the scalar

potential j is still constant at each boundary but these constants, j1 and

j2, are different. Also, by symmetry (cf. Eq. (3.28)),

f
ð2Þ
þ

f
ð1Þ
þ
¼

f ð1Þ

f ð2Þ
: ð3:36Þ

The answer for the transmission coefficient T¼ jtj2 for the case of a ring has

the form

Tj ¼
1

cosh2 jþ að Þln R2

R1

� �� � ; ð3:37Þ

the only difference from Eq. (3.32) being the shift of j by

a ¼ e

hc

j2 j1

ln
R2

R1

� � ð3:38Þ

which generalized the corresponding result of Rycerz, Recher & Wimmer

(2009) on the case of finite magnetic fields. The conductance G (per spin per

valley) and Fano factor of the shot noise F are expressed via the transmission

coefficients (3.37) by Eqs. (3.16) and (3.17). To calculate the sums one can use

the Poisson summation formula (2.145). On substituting Eq. (3.37) into (3.16)

and (3.17) one finds a compact and general answer for the effect of a magnetic

field on the transport characteristics:

G ¼ 2e2

h ln R2=R1ð Þ 1þ 2
X

1

k 1

1ð Þkcos 2pkað Þak
" #

; ð3:39Þ

F ¼ 1
2

3

1þ 2
P

1

k 1

1ð Þkcos 2pkað Þak 1þ p2k2= ln2
R2

R1

� �� �

1þ 2
P

1

k 1

1ð Þkcos 2pkað Þak

2

6

6

4

3

7

7

5

; ð3:40Þ

where

ak ¼
p2k=ln

R2

R1

� �

sinh p2k=ln
R2

R1

� �� � : ð3:41Þ
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Equation (2.60) can be solved explicitly for radially symmetric distributions

of the magnetic field B(r):

j2 j1 ¼
F

F0

ln
R2

R1

� �

þ
ð

R2

R1

dr

r

ð

r

R1

dr0r0B r0ð Þ; ð3:42Þ

where F is the magnetic flux though the inner ring. In the case of the

Aharonov Bohm effect where the whole magnetic flux is concentrated within

the inner ring one has

a ¼ F

F0

: ð3:43Þ

Owing to the large factor p2 in the argument of sinh in Eq. (3.41) only the terms

with k¼ 1 should be kept in Eqs. (3.36) and (3.37) for all realistic shapes, thus

G ¼ G0 1
4p2

ln
R2

R1

� � exp
p2

ln
R2

R1

� �

0

B

B

@

1

C

C

A

cos
eF

hc

� �

2

6

6

4

3

7

7

5

; ð3:44Þ

F ¼ 1

3
þ 8p4

3 ln3
R2

R1

� � exp
p2

ln
R2

R1

� �

0

B

B

@

1

C

C

A

cos
eF

hc

� �

; ð3:45Þ

where G0 is the conductance of the ring without magnetic field (3.33).

Oscillating contributions to G and F are exponentially small for very thin

rings but are certainly measurable if the ring is thick enough. For R2/R1¼ 5

their amplitudes are 5.3% and 40%, respectively.

Consider now a generic case with the magnetic field B¼ 0 within the flake.

Then, the solution of Eq. (2.60) is a harmonic function, that is, the real or

imaginary part of an analytic function. It can be obtained from the solution

for the disc by the same conformal transformation as that which we use to

solve the Dirac equation. One can see immediately that Eq. (3.35) remains the

same. The expressions (3.44) and (3.45) can be rewritten in terms of an

experimentally measurable quantity G0,

G ¼ G0 1
4p2

b
exp

p2

b

� �

cos
eF

hc

� �� �

; ð3:46Þ

F ¼ 1

3
þ 8p4

3b3
exp

p2

b

� �

cos
eF

hc

� �

; ð3:47Þ

where b¼ 2e2/(hG0) and we assume that b�p2.
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Thus, conformal transformation (Katsnelson & Guinea, 2008; Rycerz,

Recher & Wimmer, 2009) is a powerful tool with which to consider pseudo-

diffusive transport in undoped graphene flakes of arbitrary shape, not only in

the absence of a magnetic field but also in the presence of magnetic fluxes in

the system. An experimental study of the Aharonov Bohm oscillations and

comparison with the simple expressions (3.46) and (3.47) derived here would

be a suitable way to check whether the ballistic (pseudodiffusive) regime is

reached or not in a given experimental situation.

To conclude this chapter, we note that undoped graphene is a gapless

semiconductor, with a completely filled valence band and an empty conduc-

tion band. It is really counterintuitive that in such a situation, at zero

temperature, it has a finite conductivity, of the order of the conductance

quantum e2/h. This is one of the most striking consequences of its peculiar

‘ultrarelativistic’ energy spectrum. Formally, the electron transport in

undoped graphene is determined by zero modes of the Dirac operator, which

are described by analytic functions with proper boundary conditions. There-

fore, the whole power of complex calculus can be used here, just as in classical

old-fashioned branches of mathematical physics such as two-dimensional

hydrodynamics and electrostatics. These states cannot correspond to the

waves propagating through the sample but, rather, are represented by evan-

escent waves. The transport via evanescent waves in undoped graphene is a

completely new variety of electron transport in solids, being drastically

different from all types known before (ballistic transport in nanowires and

constrictions, diffusive transport in dirty metals, variable-range-hopping

transport in Anderson insulators, etc.). Gaining a deeper understanding of

these new quantum phenomena would seem to be a very important task.
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4

The Klein paradox and chiral tunnelling

4.1 The Klein paradox

Soon after the discovery of the Dirac equation, O. Klein (1929) noticed one of

its strange properties which was called afterwards ‘the Klein paradox’. Klein

considered the 4	 4 matrix Dirac equation for a relativistic spin-1
2
particle

propagating in three-dimensional space. To be closer to our main subject, we

will discuss the 2	 2 matrix equation for a particle propagating in two-

dimensional space; the essence of the paradox remains the same. Thus, we

will consider the stationary Schrödinger equation

ĤC ¼ EC ð4:1Þ

with the two-component spinor wave function

C ¼ c1

c2

� �

and the Hamiltonian

Ĥ ¼ ihc~̂srþ V x; yð Þ1̂þmc2ŝz: ð4:2Þ

Here c is the velocity of light, m is the mass of the particle and V(x, y) is a

potential energy; we will write explicitly the identity matrix 1̂ to show the

spinor structure of the Hamiltonian. Let us consider the one-dimensional case

V¼V(x) and ci¼ci (x) (the latter means normal incidence). Equation (4.1)

now takes the form

ihc
dc2

dx
¼ E mc2 V xð Þ
	 


c1;

ihc
dc1

dx
¼ Eþmc2 V xð Þ
	 


c2:

ð4:3Þ
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Consider first just a jump of the potential:

V xð Þ ¼ 0; x < 0,

V0; x > 0,

�

ð4:4Þ

with a positive V0.

At the left side of the barrier, the solutions c1 and c2 have x-dependence

as exp(�ikx), where the wave vector k satisfies the relativistic dispersion

relation E2 ¼ hckð Þ2 þ m2c4, or

k ¼ E2 m2c4
p

hc
: ð4:5Þ

The allowed energy values are E>mc2 (electron states) or E< mc2 (hole, or

positron, states). To be specific, we will consider the first case. Thus, using

Eq. (4.3) with V¼ 0 one finds for the incident wave

Cin xð Þ ¼ 1

a

� �

eikx ð4:6Þ

and for the reflected wave

Cr xð Þ ¼
1

a

� �

e ikx; ð4:7Þ

where

a ¼ E mc2

Eþmc2

s

: ð4:8Þ

We will assume a solution of the general form

C xð Þ ¼ Cin xð Þ þ rCr xð Þ; ð4:9Þ

where r is the reflection coefficient.

At the right side of the barrier, we have the dispersion relation

E V0ð Þ2¼ h2c2q2 þm2c4 for the new wave vector q. We will consider the

case of a potential jump that is strong enough:

V0 > Eþmc2: ð4:10Þ
In this case the solution

q ¼
V0 Eð Þ2 m2c4

q

hc
ð4:11Þ

is real and the particle can propagate also on the right side of the barrier.

However, this particle belongs to the lower (positron, or hole) continuum; see
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Fig. 4.1. It is in this situation that the paradox arises, so we will consider only

this case. For smaller values of V0, one has either the situation of propagating

electrons on both sides of the barrier, if V0<E mc2, or evanescent waves

at x> 0 if E mc2<V0<Eþmc2 (Fig. 4.1(a)).

On solving the Schrödinger equation (4.3) for x> 0 one finds for the

transmitted wave

Ct xð Þ ¼
1

1

b

0

@

1

Aeiqx; ð4:12Þ

where

b ¼ V0 E mc2

V0 Eþmc2

s

: ð4:13Þ

One can find the reflection coefficient r and the transmission coefficient t

assuming that the wave function is continuous at x¼ 0, that is,

Cin þ rCrjx 0¼ tCtjx þ0 ð4:14Þ

E = mc
2

E = – mc
2

E = 0

v 0

v 0

(a)

E = mc
2

E = – mc
2

E = 0 v0

(b)

Fig. 4.1. Electron and positron states on the left and right sides of the barrier
for the cases V0 < 2mc2 (a) and V0 > 2mc2 (b).
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or

1þ r ¼ t;

a 1 rð Þ ¼ 1

b
t:

ð4:15Þ

We find straightforwardly

r ¼ 1þ ab

ab 1
: ð4:16Þ

Since for the case under consideration a and b are real, 0< a, b< 1, one can

see immediately that r< 0 and

R ¼ rj j2¼ 1þ ab

1 ab

� �2

> 1: ð4:17Þ

However, R is nothing other than the reflection probability! Indeed, the

current density

jx ¼ ccþsxC ¼ c c
1c2 þ c
2c1

� �

ð4:18Þ

has the values 2ac and 2acR for the incident and reflected parts of the wave

function (4.9), respectively. Thus, we have the very strange conclusion that,

under the condition (4.10), the reflected current is larger than the incident one

and the reflection probability is larger than unity. This was initially called the

Klein paradox.

Our further discussion will follow Calogeracos & Dombey (1999) and

Dombey & Calogeracos (1999). (A rather complete list of references can be

found in Greiner & Schramm (2008).)

First, as was noticed by Pauli, there is a problem with the definition of the

transmitted wave. For the case (4.10), the group velocity of the particle on the

right side of the barrier,

vg ¼
1

h

dE

dq
¼ 1

h

dq

dE

� � 1

¼ hqc 2

E V0

; ð4:19Þ

is opposite to the direction of the wave vector q. This means that, formally

speaking, the transmitted wave (4.12) describes the particle propagating to

the left (for positive q) since the direction of propagation is determined by the

direction of the group velocity, not by the momentum. So, at first sight, the

formal paradox disappears (see also Vonsovsky & Svirsky, 1993).

However, it reappears in a more detailed view of the problem. Instead of

the infinitely broad barrier (4.4), let us consider the finite one:
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V xð Þ ¼ V0; xj j < a;
0; xj j > a:

�

ð4:20Þ

In this situation, there is no problem with the choice of the transmitted wave

at the right side, it is just tCin; within the barrier region one has to consider

the most general solution, with both parts, proportional to exp (�iqx). The
calculations are simple and straightforward (see, e.g., Calogeracos & Dom-

bey, 1999; Su, Siu & Chou, 1993) and the results for the reflection and

transmission probabilities R and T are

R ¼ 1 a2b2
� �2

sin2 2qað Þ
4a2b2 þ 1 a2b2

� �2
sin2 2qað Þ

; ð4:21Þ

T ¼ 4a2b2

4a2b2 þ 1 a2b2
� �2

sin2 2qað Þ
: ð4:22Þ

There is no formal problem in the sense that 0<R< 1, 0<T< 1 andRþT¼ 1,

as should be the case.

Now, the case of an infinitely broad barrier can be considered from

Eqs. (4.21) and (4.22) in the limit a!1. We should be careful here, because

of fast oscillations. If

qa ¼ Np

2
ð4:23Þ

(N is an integer) then sin (2qa)¼ 0 and we have complete transmission (R¼ 0,

T¼ 1). If we just average over the fast oscillations in the limit a!1,

replacing sin2 (2qa) by its average value 1
2
, we will find the expressions

R1 ¼
1 a2b2
� �2

8a2b2 þ 1 a2b2
� �2

; T1 ¼
8a2b2

8a2b2 þ 1 a2b2
� �2

: ð4:24Þ

Thus, the paradox reappears in a different form. It is no longer a paradox in a

logical or mathematical sense, it is just a physically counterintuitive

behaviour.

The well-known tunnelling effect in quantum mechanics assumes that the

particle can penetrate through a classically forbidden region with E<V(x) but

the probability of the penetration is exponentially small if the barrier is high

and broad. In the semiclassical approximation, the transmission of the barrier

between classical turning points x1,2 satisfying the equation E¼V(x1,2) can be

estimated as (Landau & Lifshitz, 1977)
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T � exp
2

h

ð

x2

x1

dx 2m V xð Þ E½ �
p

8

<

:

9

=

;

; ð4:25Þ

where m is the mass of the particle; the motion is supposed to be

nonrelativistic. For the relativistic particle under the condition (4.10) the

situation is dramatically different: in the limit a!1 the penetration

probability (4.24) remains finite and, in general, is not small at all. Even for

an infinitely high barrier (V0!1) one has b¼ 1 and

T1 ¼
E2 m2c4

E2 1
2
m2c4

: ð4:26Þ

This quantity is of the order of unity if E mc2 is of the order of mc2. In the

ultrarelativistic limit

E� mc2 ð4:27Þ

one has T1� 1. The ability of quantum relativistic particles to penetrate with

large enough probabilities through barriers with arbitrarily large height and

width is the contemporary formulation of the Klein paradox (Calogeracos &

Dombey, 1999).

A hand-waving explanation of the tunnel effect is based on the Heisenberg

principle: since one cannot know with arbitrary accuracy both the momen-

tum and the position of a particle at a given instant one cannot accurately

separate the total energy into a potential part and a kinetic part. Thus, the

kinetic energy can be ‘a bit’ negative.

In the relativistic regime, there is a much stronger restriction (Landau &

Peierls, 1931). One cannot know even the position alone with accuracy better

than hc=E. This means that relativistic quantum mechanics cannot be mech-

anics, it can only be field theory (Berestetskii, Lifshitz & Pitaevskii, 1971).

It always contains particles and antiparticles, and to measure the position

with an accuracy better than hc=E one needs to apply so high an energy that it

will create particle antiparticle pairs. The original particle whose position is

supposed to be measured will be lost among the newly born particles.

This consideration is relevant for the Klein paradox since under the condi-

tion (4.10) both electron and positron states are explicitly involved.

The standard interpretation of the states with negative energy is based on

the Dirac theory of holes (Bjorken & Drell, 1964; Berestetskii, Lifshitz &

Pitaevskii, 1971; Davydov, 1976). It is supposed that in the vacuum all the

states with negative energy are occupied; antiparticles are the holes in this

energy continuum. In the case (4.10) the tunnelling of a relativistic particle
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happens from a state from the upper energy continuum (x< 0) to a state in

the lower one (x> 0). In this situation the definition of the vacuum should be

reconsidered. This reconstruction takes place necessarily when we switch on

the potential and pass from the ‘normal’ situation of small V to the ‘paradox-

ical’ case (4.10).

Let us consider the case of a rectangular barrier (4.20) but for arbitrary V.

If V is small enough the bound states are formed in the gap, that is, with

energies jEj<mc2. A straightforward solution of this problem gives the

following equation for the energy of the bound states (Calogeracos &

Dombey, 1999):

tan qað Þ ¼ mc2 Eð Þ mc2 þ Eþ V0ð Þ
mc2 þ Eð Þ Eþ V0 mc2ð Þ

s

;

tan qað Þ ¼ mc2 þ Eð Þ mc2 þ Eþ V0ð Þ
mc2 Eð Þ Eþ V0 mc2ð Þ

s

;

ð4:28Þ

where

q ¼
Eþ V0ð Þ2 m2c4

q

hc

and we have made the replacement V0! V0.

When qa¼ p/2 and, thus,

V0 ¼ mc2 þ mc2ð Þ2þ p2h2c2

4a2

s

; ð4:29Þ

the energy of one of the bound states reaches the boundary of the positron

continuum, E¼ mc2 (Fig. 4.2). It is energetically favourable now to

occupy this state, creating a hole in the negative energy continuum

(positron emission). At qa¼ p the next state reaches the continuum, and

the vacuum state is reconstructed. This allows us to understand better the

nature of the original Klein paradox. Despite the problem that a large

enough barrier looks static, actually it is not. One needs to study carefully

how this state is reached, and this process involves positron emission by

the growing barrier. For a more detailed discussion of the role of the

electron positron pairs in the Klein paradox, see Krekora, Su & Grobe

(2005). We will come back to this issue later, when discussing supercritical

charges in graphene (Chapter 8).
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4.2 The massless case: the role of chirality

We are going to discuss the Klein paradox and related issues for the massless

Dirac fermions in graphene (Katsnelson, Novoselov & Geim, 2006). The case

m¼ 0 is very special. If we put m¼ 0 in the results (4.21) and (4.22) we will

have T¼ 1 and R¼ 0 for any parameters of the potential (one can see from

Eqs. (4.8) and (4.13) that a¼ b¼ 1 for m¼ 0). This result is not related to a

specific choice of the potential barriers (4.20).

For m¼ 0, the equations (4.3) can be solved very easily for arbitrary V(x).

Let us introduce a variable

w ¼ 1

hc

ð

x

dx0 E V x0ð Þ½ �: ð4:30Þ

Of course, we have to be careful: this change of variables is possible only for

the intervals within which E>V(x) or E<V(x), so dw/dx never vanishes.

Therefore, we will use (4.30) separately for each interval between two turning

points (and for the intervals between 1 and the first turning point and

between the last turning point and þ1). There are two basic solutions for

each such interval:

C> ¼
1

1

� �

exp i wj jð Þ ð4:31Þ

0 1 2 3 4
V0/ (mc

2)

E
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m
c

2
)
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0.0
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Fig. 4.2. Energies of the bound state found from Eq. (4.28) as functions
of the height of the barrier; a ¼ 2h=ðmcÞ.
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and

C< ¼
1

1

� �

exp i wj jð Þ: ð4:32Þ

Both components of the spinor should be continuous at the turning points, so

one can see immediately that the only way to match the solutions is to choose

either C> or C< to be zero everywhere. One can never have a combination of

incident and reflected waves, since propagation is allowed in one direction

only (one has to recall that here we consider only the case of normal inci-

dence; for two-dimensional problems with C(x, y) this is not the case, see the

next section).

The point is that a massless Dirac particle can propagate only either along

its (pseudo)spin direction or in the opposite direction. The scalar potential

proportional to the identity matrix in the Hamiltonian (4.2) does not act on

the pseudospin and therefore cannot change the direction of propagation of a

massless particle with spin 1
2
to the opposite.

This property has an analogue in more general two-dimensional and three-

dimensional situations with V¼V(x, y) or V¼V(x, y, z): backscattering is

forbidden. This was found long ago for the scattering of ultrarelativistic

particles in three dimensions (Yennie, Ravenhall &Wilson, 1954; Berestetskii,

Lifshitz & Pitaevskii, 1971). Ando, Nakanishi & Saito (1998) noticed an

importance of this property for carbon materials. In particular, the absence

of backscattering explains the existence of conducting channels in metallic

carbon nanotubes; in a nonrelativistic one-dimensional system an arbitrarily

small disorder leads to localization (Lifshitz, Gredeskul & Pastur, 1988), so the

conductive state of the nanotubes is not trivial.

The consideration of Ando, Nakanishi & Saito (1998) is very instructive,

since it shows explicitly the role of the Berry phase and time-reversal sym-

metry, but it is quite cumbersome. Here we present a somewhat simplified

version of this proof. To this end, we consider the equation (Newton, 1966)

for the scattering T-matrix,

T̂ ¼ V̂þ V̂Ĝ0T̂; ð4:33Þ

where V̂ is the scattering potential operator,

Ĝ0 ¼ lim
d!þ0

1

E Ĥ0 þ id
ð4:34Þ

is the Green function of the unperturbed Hamiltonian Ĥ0 and E is the

electron energy (we will assume E> 0). For more details of this formalism,
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see Chapter 6. If Ĥ0 is the Dirac Hamiltonian for massless fermions (1.22),

we have

Ĝ0 ~r;~r
0ð Þ ¼

ð

d~q

2pð Þ2
Ĝ0 ~qð Þ exp i~q ~r ~r 0ð Þ½ �; ð4:35Þ

where

Ĝ0 ~qð Þ ¼ 1

E hv~q~sþ id
¼ 1

hv

kþ~q~s

kþ idð Þ2 q2
ð4:36Þ

with k ¼ E=ðhvÞ. The probability amplitude of the backscattering can be

found by iterations of Eq. (4.33) and is proportional to

T ~k; ~k
� �

¼ ~k
D �

�

�Vþ VĜVþ VĜVĜVþ � � � ~k
�

�

�

E

� T 1ð Þ þ T 2ð Þ þ � � � ; ð4:37Þ

where T(n) is the contribution proportional to Vn.

Let us assume that ~kjjOx (we can always choose the axes in such a way),

then ~k
�

�

�

E

and ~k
�

�

�

E

have spinor structures

1

1

� �

and
1

1

� �

;

respectively (see Eq. (1.32)). Thus, if T̂ is a 2	 2 matrix

T̂ ¼ T0 þ ~T~̂s ð4:38Þ

one has

T ~k; ~k
� �

� ~k
D �

�

�Tz þ iTy
~k
�

�

�

E

: ð4:39Þ

Then, keeping in mind that V is proportional to the identity matrix, one can

prove, term by term, that all contributions to ~k
D �

�

�Tz
~k
�

�

�

E

and ~k
D �

�

�Ty
~k
�

�

�

E

vanish by symmetry. Actually, this is just because ~T ~k
� �

� ~k jjOx one

cannot construct from the vectors ~k and ~k anything with nonzero y- or

z-components: for two nonparallel vectors ~k1 and ~k2 one of them has a nonzero

y-component, and ~k1 	 ~k2 jjOz.

4.3 Klein tunnelling in single-layer graphene

Keeping in mind electrons in quantum electrodynamics, it is not easy to

create potential jumps larger than 2mc2� 1MeV. Similar phenomena take

place in very high electric or gravitational fields (Greiner, Mueller &
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Rafelski, 1985; Grib, Mamaev & Mostepanenko, 1994; for a detailed list of

references, see Greiner & Schramm, 2008), but the context is always quite

exotic, such as collisions of ultraheavy ions or even black-hole evaporation.

There were no experimental data that would require the Klein paradox for

their explanation.

It was realized soon after the discovery of graphene that Klein tunnelling

(tunnelling of Dirac fermions under the conditions of the Klein paradox) is one

of the crucial phenomena for graphene physics and electronics (Katsnelson,

Novoselov & Geim, 2006). Soon after the theoretical prediction of Klein

tunnelling in graphene, it was confirmed experimentally (Stander, Huard &

Goldhaber-Gordon, 2009; Young & Kim, 2009).

In conventional terms of solid-state physics, Klein tunnelling is nothing

other than tunnelling through a p n p (or n p n) junction when electrons are

transformed into holes and then back to electrons (or vice versa) (Fig. 4.3). As

we saw in the previous section, for massless Dirac fermions the transmission

at normal incidence is always 100% irrespective of the height and width of the

potential barrier. From the point of view of applications, this is very bad

news: if one just copies the construction of a silicon transistor it will not work,

since it is impossible to lock it. The gap opening is necessary. The good news

is that, due to the Klein paradox, the unavoidable inhomogeneities of the

electron density in graphene (see Chapter 10) do not lead to localization and,

moreover, their effect on the electron mobility is not very great. We will come

back to this important issue many times in this book.

s = –1 s = +1

px > 0 px < 0

Fig. 4.3. Transformation of an electron to a hole under the potential barrier;
the large arrows show directions of momenta assuming that the group
velocity is always parallel to the Ox axis. Black and grey lines show the
dispersion of electronic states with opposite pseudospin projections.
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Consider now, following Katsnelson, Novoselov & Geim (2006), electron

propagation through the barrier (4.20) for an arbitrary angle of incidence j.

The energy E ¼ hvk is supposed to be positive. There is a refraction of the

electron wave at the potential jump, and the new angle y is determined by the

conservation of the y-component of the electron momentum (and, thus, of

the wave vector):

ky ¼ k sinj ¼ qy ¼ q sin y; ð4:40Þ

where

q ¼ E V0j j
hv

ð4:41Þ

is the length of the wave vector within the barrier. For massless Dirac

fermions with energy E propagating at the angle j to the x-axis the

components of the spinor wave functions are related by

c2 ¼ c1 exp ijð ÞsgnE ð4:42Þ

(see Eq. (1.30)). Thus, the wave function has the following form (cf. Eq. (3.13)

for the case of zero energy):

c1 x; yð Þ ¼
exp ikxxð Þ þ r exp ikxxð Þ½ �exp ikyy

� �

; x < a;

A exp iqxxð Þ þ B exp iqxxð Þ½ �exp ikyy
� �

; xj j < a;

t exp ikxxþ ikyy
� �

; x > a;

8

>

>

<

>

>

:

ð4:43Þ

c2 x; yð Þ ¼
s exp ikxxþ ijð Þ r exp ikxx ijð Þ½ �exp ikyy

� �

; x < a,

s0 A exp iqxxþ iyð Þ B exp iqxx iyð Þ½ �exp ikyy
� �

; xj j < a,

st exp ikxxþ ikyyþ ij
� �

; x > a,

8

>

>

<

>

>

:

ð4:44Þ

where

s ¼ sgnE; s0 ¼ sgn E V0ð Þ; kx ¼ cosj; qx ¼ q cos y ð4:45Þ

and we have taken into account that the reflected particle moves at the angle

p j, exp[i(p j)]¼ exp( ij). The parameters r (the reflection coeffi-

cient), t (the transmission coefficient), A and B should be found from the

continuity of c1 and c2 at x¼�a. Note that the Klein-paradox situation is

ss0 ¼ 1 ð4:46Þ
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(with opposite signs of the energy outside and inside the barrier). As a result,

one finds

(4.47)

r ¼ 2 exp ij� 2ikxað Þsin 2qxað Þ

	 sinj� ss0 sin y

ss0 exp �2iqxað Þcos jþ yð Þ þ exp 2iqxað Þcos j� yð Þ½ � � 2i sin 2qxað Þ :

The transmission probability can be calculated as

T ¼ tj j2¼ 1 rj j2: ð4:48Þ

The results are shown in Fig. 4.4. In agreement with the general consideration

of the previous section, r¼ 0 at j¼ 0 (this can be seen immediately from

Eqs. (4.47) and (4.40)).

1.0

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1.0
90° 90°

60° 60°

30°30°

0°0°

–30° –30°

–60° –60°

–90° –90°

(a) (b)

Fig. 4.4. Transmission probabilities through a 100-nm-wide barrier as a
function of the angle of incidence for single-layer (a) and bilayer (b) gra-
phene. The electron concentration n outside the barrier is chosen as
0.5	1012 cm 2 for all cases. Inside the barrier, hole concentrations p are
1	1012 and 3	1012 cm 2 for black and grey curves, respectively (such
concentrations are most typical in experiments with graphene). This corres-
ponds to Fermi energies E of incident electrons �80 and �17 meV for single-
layer and bilayer graphene, respectively. The barrier heights V0 are (a) 200
and (b) 50meV (black curves) and (a) 285 and (b) 100meV (grey curves).
(Reproduced with permission from Katsnelson, Novoselov & Geim, 2006.)
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There are also additional ‘magic angles’ for which r¼ 0 and one has 100%

transmission. They correspond to the condition sin (2qx a)¼ 0, or

qxa ¼
p

2
N; ð4:49Þ

where N¼ 0, �1, �2, . . . Interestingly, this coincides with the condition (4.23)

of complete transmission for the case of nonzero mass. These conditions

correspond to the Fabry Pérot resonances in optics (Born & Wolf, 1980).

The same resonances can take place for a more general potential V¼V(x), as

was shown in the semiclassical approximation by Shytov, Rudner & Levitov

(2008) (see also Shytov et al., 2009). This issue will be considered in the next

section.

4.4 Klein tunnelling for a smooth potential barrier

and the effect of magnetic fields

Strictly speaking, theDirac-cone approximation itself does notwork for the case

of an atomically sharp potential since it will induce intervalley scattering, which

can change the whole physical picture dramatically. The sharp potential jump

considered in the previous sections means a sharpness in comparison with the

electron wave length k 1 but not in comparison with the interatomic distance a.

So, the typical spatial scale of the change of potential at the barrier d was

assumed to satisfy the condition

a� d� 1

k
: ð4:50Þ

The opposite limit case, that of a very smooth potential,

kd� 1; ð4:51Þ

was first considered by Cheianov and Falko (2006). It turns out that in this

case the region of high transmission near j� 0 is pretty narrow:

T jð Þ ¼ exp Ckd sin2j
� �

; ð4:52Þ
where C is a numerical factor depending on the specific shape of the potential,

thus T(j)� 1 if

jj j � 1

kd
p ð4:53Þ

(the ‘Klein collimation’). The result (4.52) was obtained there using both

the exact solution of the Dirac equation in a constant electric field and
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the semiclassical approximation. We will present here a simple derivation

following Shytov, Gu & Levitov (2007) (see also Shytov et al., 2009).

Let us consider the Schrödinger equation (4.1) with the Hamiltonian (4.2)

for the case when

V xð Þ ¼ eEx; ð4:54Þ

where E is the electric field. One can use the momentum representation for the

coordinate x, x$ kx. Then the coordinate x! i q/qkx and the Schrödinger

equation takes the form (with the replacement c! v, keeping in mind the case

of graphene)

ieE
qC

qkx
¼ Ĥ0C; ð4:55Þ

where

Ĥ0 ¼ hv~k~s e

(here we use the notation e for the electron energy, in order not to confuse

it with the electric field). The equation (4.55) is formally equivalent to the

time-dependent Schrödinger equation with a time t0 ¼ hkx=ðeEÞ and the

Hamiltonian linearly dependent on the ‘time’. This is nothing other than

the problem of Landau Zener breakdown, in which the term hvkysy plays

the role of the gap in the Hamiltonian. Using the known solution of this

problem (Vonsovsky & Katsnelson, 1989) one finds

T � exp
phvk2y

eEj j

 !

; ð4:56Þ

which coincides with Eq. (4.52), keeping in mind that d � hvk= eEj j.
If we have crossed electric and magnetic fields E and B (B jjOz), one can

use the Lorentz transformation, similarly to what was done in Section 2.10

(see Eqs. (2.196) and (2.197)). In the case

E >
v

c
B; ð4:57Þ

which is complementary to Eq. (2.198), one can exclude the magnetic field,

and the electric field E is replaced in Eq. (4.56) by

E 1
vB

cE

� �2
s

¼ E
2 vB

c

� �2
s
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(cf. Eq. (2.200)). The effects of disorder on the motion of an electron near a

p n junction were considered by Fogler et al. (2008).

Shytov, Rudner & Levitov (2008) studied the case of a parabolic potential

barrier,
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Fig. 4.5. The transmission coefficient, obtained from numerical solution of
the Dirac equation with the potential (4.58), plotted as a function of the
component of electron momentum py and potential depth. At zero magnetic
field (a), transmission exhibits fringes with a phase that is nearly independent
of py. At finite magnetic field (b), the fringe contrast reverses its sign on the

parabola (black thin line). Here e
 ¼ ah2v2
� �1=3

and p
 ¼ e
=v. (Reproduced

with permission from Shytov, Rudner & Levitov (2008)).
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V xð Þ ¼ ax2 e ð4:58Þ

(a, e> 0), which creates p n boundaries at

x ¼ �xe � �
e

a

r

: ð4:59Þ

The magnetic field B is included in the Landau gauge, Ax¼ 0, Ay¼ Bx.

Numerical solution of the Schrödinger equation gives the results shown in

Fig. 4.5. One can see that a region of 100% transmission can exist not only for

a rectangular barrier (see Eq. (4.49)) but also for a more general potential. At

the same time, for nonsymmetric potentials, V(x) 6¼V( x), the side resonances

with j 6¼ 0 turn out to be suppressed (Tudorovskiy, Reijnders & Katsnelson,

2012). The magnetic field modifies the picture of the transmission in a

peculiar way. Oscillations of the conductance through the barrier as a func-

tion of the magnetic field were observed by Young & Kim (2009) (Fig. 4.6).

4.5 Negative refraction coefficient and Veselago lenses

for electrons in graphene

As was discussed in Section 4.1, the group velocity ~vg is parallel to the wave

vector ~k for particles (electrons) and antiparallel for antiparticles (holes). In

the situation of the Klein paradox, the incident and transmitted waves

propagate, by definition, in the same direction, and the propagation

direction is determined by the group velocity. This means that the wave

vectors for these waves are antiparallel. For massless particles with a linear

dispersion, the group velocity is

–10

2

0

1 2 3 4 1 2 3 4

0 10
Gosc (e2/h)

B
 (

T
)

|n2| (1012 cm–2)

Fig. 4.6. The magnetic-field and density dependences of the conductance of a
p–n–p junction in graphene; left and right panels present experimental data
and theoretical results, respectively. (Reproduced with permission from
Young & Kim, 2009.)
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~vg ¼ �v
~k

k
; ð4:60Þ

where the signsþ and correspond to electrons and holes, respectively. The

incident electron wave has the wave vector ~k ¼ k cosj; sinjð Þ and the group

velocity ~ve ¼ v cosj; sinjð Þ. The reflected wave has the wave vector
~k
0 ¼ k cosj; sinjð Þ and the group velocity ~ve

0 ¼ v cosj; sinjð Þ. For

the transmitted wave, in the situation of the Klein paradox (or for a p n

junction, using conventional semiconductor terminology) the group velocity

~vh ¼ v cos y0; sin y0ð Þ and the wave vector ~q ¼ q cos y0; sin y0ð Þ; cos y0 > 0, q is

determined by Eq. (4.41) and y0¼ y. The refraction angle y0 is determined by

the continuity of the y-component of the wave vector (see Eq. (4.40)), or

sin y0

sinj
¼ k

q
� n ð4:61Þ

with a negative refractive index n. This means that the p n junction in

graphene transforms a divergent electron beam into a collimated one, see

Fig. 4.7 (Cheianov, Falko & Altshuler, 2007).

In optics such devices are known as Veselago lenses (Veselago, 1968), and

materials with negative refractive indices are called left-handed materials, or

metamaterials (Pendry, 2004). Creation of such a material for the visual light

is not an easy task. For electrons in graphene such a situation can be realized

quite easily. For a detailed discussion of the relation between the negative

refraction index and the Klein paradox, see Güney & Meyer (2009).

4.6 Klein tunnelling and minimal conductivity

As was stressed in the previous chapter, the existence of a minimal conduct-

ivity of the order of e2/h is one of the striking properties of graphene. We

Fig. 4.7. A Veselago lens for the case of a negative refraction index.

94 The Klein paradox and chiral tunnelling

              

       



discussed this from the perspective of pure samples (the ballistic regime). It is

instructive to consider the same problem from the opposite perspective of

strong disorder (Katsnelson, Novoselov & Geim, 2006).

It is worth recalling first some basic ideas on the electronic structure

of strongly disordered systems (Mott, 1974; Mott & Davis, 1979; Shklovskii &

Efros, 1984; Lifshitz, Gredeskul & Pastur, 1988). Let us start with the case

in which typical fluctuations of the potential energy V(x, y) are much stronger

than the kinetic energy T. The electrons are locked into puddles restricted by

the equipotential lines E¼V(x, y). There is a small probability of tunnelling

from one puddle to another, so some electrons are distributed among couples

of puddles, fewer electrons among trios of puddles, etc. (Fig. 4.8). On increas-

ing the ratio jT/Vj the tunnelling probability increases, and at some point a

percolation transition happens (Shklovskii & Efros, 1984), with the formation

of an infinite cluster of regions connected by electron tunnelling. This perco-

lation is associated with the Mott Anderson metal insulator transition,

although the latter involves more then just percolation, since phase relations

between the electron wave functions are also important (Mott & Davis, 1979).

The Klein tunnelling changes the situation dramatically. However small

the kinetic energy is (or, equivalently, however high and broad the potential

barriers are), the electrons cannot be locked into puddles (Fig. 4.9). Thus,

their states cannot be localized.

In the absence of Anderson localization, the minimal conductivity can be

estimated via Mott’s considerations on the basis of the remark by Ioffe and

Regel that for extended states the electron mean free path l cannot be smaller

than the electron de Broglie wave length (Mott, 1974; Mott & Davis, 1979).

Here we apply this general consideration to graphene.

Fig. 4.8. A sketch of electronic states in conventional semiconductors with
strong disorder; electrons tunnel, with a small probability, between classic-
ally allowed regions.
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Let us start with Einstein’s relation between the conductivity s and the

electron diffusion coefficient D,

s ¼ e2
qn

qm
D ð4:62Þ

(Zubarev, 1974). For a noninteracting degenerate (obeying Fermi statistics)

electron gas

qn

qm
¼ N EFð Þ ¼ 2 EFj j

ph2v2
¼ 2kF

phv
ð4:63Þ

(see Eqs. (2.138) and (1.72)). For the two-dimensional case, the diffusion

coefficient is

D ¼ 1

2
v2t; ð4:64Þ

where t is the electron mean-free-path time. On substituting Eqs. (4.63) and

(4.64) into (4.62) one finds

s ¼ e2

ph
kFl ¼

2e2

h
kFl; ð4:65Þ

where l¼ vt is the mean free path. Assuming that the minimal possible value

of kF l is of the order of unity, we have an estimation for the minimal

conductivity of

smin �
e2

h
ð4:66Þ

Fig. 4.9. A sketch of electronic states in graphene with strong disorder; due
to Klein tunnelling, electrons cannot be locked and penetrate through p–n
boundaries, transforming into holes.
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coinciding, in the order of magnitude, with the ballistic conductivity e2/(ph)

per channel (see Eq. (3.18)).

This conclusion is very important, in the light of experimental obser-

vation of electron hole puddles in graphene on a substrate in the vicinity

of the neutrality point (Martin et al., 2007). Moreover, it was demon-

strated theoretically that the puddles are unavoidable even for freely

suspended graphene at room temperature since the inhomogeneities of

electron density result from thermal bending fluctuations (Gibertini

et al., 2010); this phenomenon will be considered in detail in Chapter 10.

It is the Klein tunnelling which protects electron states from localization

and makes large-scale inhomogeneities rather irrelevant for electron

transport.

The minimal conductivity was analysed in terms of classical percolation by

Cheianov et al. (2007). It follows from their analysis that the minimal con-

ductivity is of the order of e2/h if the number of electrons (holes) per puddle is

of the order of one.

4.7 Chiral tunnelling in bilayer graphene

To elucidate which features of the anomalous tunnelling in graphene are

related to the linear dispersion and which features are related to the pseudo-

spin and chirality of the Dirac spectrum, it is instructive to consider the same

problem for bilayer graphene (Katsnelson, Novoselov & Geim, 2006).

We will restrict ourselves to the case of moderate electron energies, for

which the parabolic approximation (1.46) works. This means that the energies

are smaller than that of interlayer hopping, both outside and inside the

barrier:

Ej j; E V0j j � 2 g1j j ð4:67Þ

and, at the same time, the trigonal warping effects are not important,

ka; qa >
g3g1

g20

�

�

�

�

�

�

�

�

ð4:68Þ

(cf. Eq. (1.55)), where we assume that the potential barrier has the shape

(4.20), and k and q are the wave vectors outside and inside the barrier,

respectively:

k ¼ 2m
 Ej j
h2

s

; q ¼ 2m
 E V0j j
h2

s

: ð4:69Þ
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Assuming that the wave function propagates in the y-direction with the wave-

vector component ky, the two components of the spinor wave function are

c1 x; yð Þ ¼ c1 xð Þexp ikyy
� �

;

c2 x; yð Þ ¼ c2 xð Þexp ikyy
� �

;
ð4:70Þ

where ci (x) satisfy the second-order equations

d 2

dx2
k2
y

� �2

ci ¼ k4ci ð4:71Þ

outside the barrier and

d 2

dx2
k2
y

� �2

ci ¼ q4ci ð4:72Þ

inside it. At the boundaries x¼�a one has to require that four conditions

be fulfilled, namely continuity of c1, c2, dc1/dx and dc2/dx. To satisfy them

one has to include not only propagating but also evanescent solutions of

Eqs. (4.71) and (4.72) but, of course, without the terms growing exponentially

at x!�1.

Let us consider first the case x< a. The two components of the wave

function can be found from the equations

d

dx
þ ky

� �2

c2 ¼ sk2c1;

d

dx
ky

� �2

c1 ¼ sk2c2;

ð4:73Þ

where s¼ sgn E (cf. Eq. (4.45)). Thus, for this region one can try the solutions

c1 xð Þ ¼ a1 exp ikxxð Þ þ b1 exp ikxxð Þ þ g1 exp wxxð Þ;
c2 xð Þ ¼ s a1 exp ikxxþ 2ijð Þ þ b1 exp ikxx 2ijð Þ g1h1 exp wxxð Þ½ �;

ð4:74Þ

where j is the angle of incidence,

ky ¼ k sinj; kx ¼ k cosj; ð4:75Þ

wx ¼ k2x þ 2k2y

q

¼ k 1þ sin2j

q

ð4:76Þ

and

h1 ¼ 1þ sin2j

q

sinj

� �2

: ð4:77Þ
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The coefficients a1, b1 and g1 are the amplitudes of the incident, reflected and

evanescent waves, respectively.

For the case x> a there is no reflected wave:

c1 xð Þ ¼ a3 exp ikx xð Þ þ d3 exp wx xð Þ;

c2 xð Þ ¼ s a3 exp ikx xþ 2ijð Þ d3

h1
exp wx xð Þ

� �

;
ð4:78Þ

the phase factor exp(2ij) follows from Eq. (1.48). Finally, inside the barrier

jxj< a one has to use the most general solution with two propagating and two

evanescent waves:

(4.79)

c1ðxÞ ¼ a2 expðiqxxÞ þ b2 expð iqxxÞ þ g2 exp w0xx
� �

þ d2 exp w0xx
� �

;

c2 xð Þ ¼ s0
�

a2 exp iqxxþ 2iyð Þ þ b2 exp iqxx 2iyð Þ g2h2 exp w0xx
� �

d2

h2
exp w0xx
� �

�

;

where y is the refraction angle,

qy ¼ q sin y ¼ ky; qx ¼ q cos y; ð4:80Þ

w0x ¼ q 1þ sin2y
p

; ð4:81Þ

h2 ¼ 1þ sin2y
p

sin y
� �2

ð4:82Þ

and s0¼ sgn(E V0) (cf. Eq. (4.45)). The presence of the evanescent waves is a

very interesting feature of bilayer graphene that is dramatically different both

from the Dirac case and from the Schrödinger case.

Now we have to find the coefficients ai, bi, gi and di from eight conditions

of continuity of ci (x) and dci (x)/dx at x¼ a and x¼ a. In general, this can

be done only numerically. Typical results for the ‘Klein’ case ss0¼ 1 are

shown in Fig. 4.4(b). Similarly to the case of single-layer graphene, there are

‘magic angles’ with transmission probability equal to unity.

For the case of normal incidence (j¼ 0, y¼ 0) the problem can be solved

analytically, and the result for the transmission coefficient is

t ¼ a3

a1
¼ 4ikq exp 2ikað Þ

qþ ikð Þ2 exp 2qað Þ q ikð Þ2 exp 2qað Þ
: ð4:83Þ

In contrast with the case of single-layer graphene, T¼ jtj2 decays exponen-

tially with the height and the width of the barriers, as exp( 4qa) for j¼ 0.
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This illustrates a drastic difference between the cases of chiral scattering with

Berry phases p and 2p. For the latter case, the condition (1.49) does not fix

the projection of the pseudospin to the direction of the motion (cf. Eq. (1.33)),

so the conservation of the chirality does not forbid backscattering.

For the case a!1 (which is just a potential step corresponding to a single

p n junction) T¼ 0 at j¼ 0, which looks rather counterintuitive: there is a

continuum of allowed states after the barrier but the penetration there is

forbidden. Furthermore, for a single p n junction with V0 � E, the following

analytic solution for any j has been found:

T ¼ E

V0

sin2 2jð Þ; ð4:84Þ

which, again, yields T¼ 0 for j¼ 0. This behaviour is in obvious contrast

with that of single-layer graphene, where normally incident electrons are

always perfectly transmitted.

The perfect reflection (instead of perfect transmission) can be viewed as

another incarnation of the Klein paradox, because the effect is again due to

the charge-conjugation symmetry. For single-layer graphene, an electron

wave function at the barrier interface perfectly matches the corresponding

wave function for a hole with the same direction of pseudospin, yielding

T¼ 1. In contrast, for bilayer graphene, the charge conjugation requires a

propagating electron with wave vector k to transform into a hole with wave

vector ik (rather than k), which is an evanescent wave inside a barrier.

For completeness, we compare the results obtained with those from the

case of conventional nonrelativistic electrons. If a tunnel barrier contains no

electronic states, the difference is obvious: the transmission probability in this

case is known to decay exponentially with increasing barrier width and height

(Esaki, 1958), so that the tunnel barriers discussed above would reflect

electrons completely. However, both graphene systems are gapless, and it is

more appropriate to compare them to gapless semiconductors with nonchiral

charge carriers (such a situation can be realized in certain heterostructures

(Meyer et al., 1995; Teissier et al., 1996)). In this case, we find

t ¼ 4kxqx exp 2iqxað Þ
qx þ kxð Þ2 exp 2iqxað Þ qx kxð Þ2 exp 2iqxað Þ

; ð4:85Þ

where kx and qx are the x-components of the wave vector outside and inside the

barrier, respectively. Again, similarly to the case of single-layer and bilayer

graphene, there are resonance conditions 2qx a¼ pN, N¼ 0, �1, . . ., at which
the barrier is transparent. For the case of normal incidence (j¼ 0), the
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tunnelling coefficient is then an oscillating function of the tunnelling parameters

and can exhibit any value from 0 to 1 (see Fig. 4.10). This is in contrast with

graphene, for which T is always 1, and bilayer graphene, for which T¼ 0 for

sufficiently wide barriers. This makes it clear that the drastic difference among

the three cases is essentially due to the different chiralities or pseudospins of the

quasiparticles involved rather than any other features of their energy spectra.

The existence of magic angles with 100% transmission for the case of

bilayer graphene implies, again, that there is no way to lock the electrons

into a restricted region of strongly disordered bilayer graphene. One could

therefore expect the existence of a minimal conductivity of the order of e2/h in

this case as well, in agreement with experiment (Novoselov et al., 2006).

To summarize this chapter, the Klein paradox is a key phenomenon for

electronic transport in graphene and for graphene-based electronics. On the

1.0

0.8

0.6

T

0.4

0.2

0
0 10 20 30

D (nm)

40 50

Fig. 4.10. The transmission probability T for normally incident electrons in
single-layer and bilayer graphene and in a nonchiral zero-gap semiconductor
as a function of the width D of the tunnel barrier. The concentrations of
charge carriers are chosen as n¼ 0.5	 1012 cm 2 and p¼ 1	 1013 cm 2

outside and inside the barrier, respectively, for all three cases. The transmis-
sion probability for bilayer graphene (the lowest line) decays exponentially
with the barrier width, even though there are plenty of electronic states
inside the barrier. For single-layer graphene it is always 1 (the upper line).
For the nonchiral semiconductor it oscillates with the width of the barrier
(the intermediate curve). (Reproduced with permission from Katsnelson,
Novoselov & Geim, 2006.)
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one hand, it protects high electron mobility in inhomogeneous graphene and

prevents Anderson localization. On the other hand, it is an essential obstacle

to copying a ‘normal’ transistor based on p n p (or n p n) junctions in

conventional semiconductors. Usually, one can easily lock the transistor by

applying a voltage to the potential barrier, which is impossible for the cases of

both single-layer and bilayer graphene due to the Klein paradox. One needs

to open a gap in the electron spectrum. One of the most natural ways to do

this is the use of space quantization in graphene nanoribbons and nanoflakes,

which will be one of the subjects of the next chapter.
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5

Edges, nanoribbons and quantum dots

5.1 The neutrino billiard model

Owing to the Klein paradox, the massless Dirac fermion cannot be confined in a

restricted region by any configuration of a purely electrostatic (scalar) potential

V(x, y); one needs the gap opening. As discussed in Section 1.3, this requires a

violation of the equivalence of the sublattices. Let us consider the Hamiltonian

Ĥ ¼ ihv~srþ szD x; yð Þ; ð5:1Þ
where the last term represents a difference of potential energy between the

A and B sites (or between (pseudo)spin up and (pseudo)spin down states).

With D¼ constant the energy spectrum of the Hamiltonian (5.1) is

E ~k
� �

¼ � h2v2k2 þ D
2

p

; ð5:2Þ

where ~k is the wave vector and there is the energy gap 2jDj. For a given energyE,
the regions where jEj< jD(x, y)j are classically forbidden; quantum mechanic-

ally, the probability of tunnelling to these regions decays exponentially with the

distance from the boundary. In particular, one can introduce the boundary

condition

D x; yð Þj j ¼ �1 ð5:3Þ
at a line L; thus, only the region D restricted by the line L is allowed for the

particle (Fig. 5.1). The line L is parameterized by the length s counted from

some initial point:

x ¼ xL sð Þ; y ¼ yL sð Þ ð5:4Þ
We will assume

D x; yð Þ ¼ 0 ð5:5Þ
within the region D.
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This model was considered by Berry & Mondragon (1987) long before the

discovery of graphene and was called the ‘neutrino billiard’ (at that time it

was assumed that the neutrino had zero mass). It is not sufficient to describe

completely the edge effects and confinement in graphene nanoribbons and

nanoflakes: as we will see further the existence of two valleys is of crucial

importance, thus, the single Dirac point approximation is not enough. How-

ever, it contains already some important physics, so it is convenient to start

our consideration with this model.

An important property of the Hamiltonian (5.1) is that it is not invariant

under the time-reversal symmetry operation T̂. The latter can be represented

(Landau & Lifshitz, 1977) as

T̂ ¼ ÛK̂; ð5:6Þ

where

Û ¼ iŝy ¼
0 1

1 0

� �

ð5:7Þ

and K̂ is the complex conjugation. Under this operation the Hamiltonian Ĥ

(5.1) is transformed into

^H0 ¼ Û ^H


Ûþ ¼ ihv~sr szD x; yð Þ ð5:8Þ

and differs from Eq. (5.1) by the sign of D. This means that there is no

Kramers degeneracy (Landau & Lifshitz, 1977) of the energy levels of the

Hamiltonian (5.1). At the same time this means that the energy spectrum is

insensitive to the sign of D: if

y

x

n

a

j1

j0

Fig. 5.1. The geometry of a ‘neutrino billiard’. The particle moves within the
region D restricted by the line L where the infinite-energy gap opens.
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C ¼ c1

c2

� �

is an eigenstate of the Hamiltonian (5.1) with an energy E the function

C
0 ¼ T̂C ¼ c
2

c
1

� �

ð5:9Þ

corresponds to the same eigenvalue E for the Hamiltonian (5.8). Obviously,

C
0 is orthogonal to C since (C0)* C� 0.

The most general boundary condition for the Hamiltonian (5.1) and (5.5)

follows from the requirement that it should be Hermitian (or, equivalently, its

energy spectrum should be real). Using the Gauss theorem, one has
ðð

D

dx dy C
þĤC C

þĤ
þ
C

� �

¼ ihv

ðð

D

dx dy C
þ~srCþ rCþð Þ~sC½ �

¼ ihv

ðð

D

dx dyr C
þ~sC½ �

¼ ih

þ

L

ds~n sð Þ~j sð Þ ¼ 0;

ð5:10Þ

where~n is the unit vector normal to the curve L and~j ¼ vCþ~sC is the current

density (cf. Eq. (3.2)).

The local boundary condition must ensure that there is no normal current

to the boundary at any point. On introducing the angle a such that

~n ¼ cos a; sin að Þ ð5:11Þ

(see Fig. 5.1) one can write this condition as

cos a Re c
1c2

� �

þ sin a Im c
1c2

� �

¼ 0 ð5:12Þ

or, equivalently,

c2

c1

¼ iB exp ia sð Þð Þ; ð5:13Þ

where B¼B(s) is real.

To specify B one can consider first the case of a flat boundary L k Oy. One

can assume that D¼ 0 at x< 0 and D¼D0¼ constant at x> 0, solve explicitly

the Dirac equation as was done in the previous chapter, consider the reflection

problem and compare the result for c2(x¼ 0)/c1(x¼ 0) with Eq. (5.13) at

a¼ 0. One can see that

B ¼ �1 ð5:14Þ
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at D0!�1. We will call Eq. (5.13) with B¼�1 the infinite-mass boundary

condition (Berry & Mondragon, 1987).

It is not surprising that this boundary condition is not invariant under the

time-reversal operation. Indeed, it follows from Eqs. (5.9) and (5.13) that

c 02
c 01
¼ c1

c2

� �

¼ iB exp ia sð Þð Þ; ð5:15Þ

which differs from Eq. (5.13) by the sign (we have taken into account that

B2¼ 1).

Confinement of electrons in a finite region leads to a discrete energy

spectrum. Consider first the simplest case in which L is just a circle, r¼R,

where we pass to the polar coordinates

x ¼ r cosj; y ¼ y sinj: ð5:16Þ

In these coordinates,

i~sr ¼ i

0 e ij q

qr

i

r

q

qj

� �

eij
q

qr
þ i

r

q

qj

� �

0

0

B

B

@

1

C

C

A

ð5:17Þ

and the Schrödinger equation for the state with E ¼ hvk takes the form

e ij q

qr

i

r

q

qj

� �

c2 ¼ ikc1;

eij
q

qr
þ i

r

q

qj

� �

c1 ¼ ikc2:

ð5:18Þ

One can try solutions of Eq. (5.18) of the form

c1 r;jð Þ ¼ c1 rð Þexp iljð Þ;
c2 r;jð Þ ¼ c2 rð Þexp i lþ 1ð Þj½ �;

ð5:19Þ

where l is integer. On substituting Eq. (5.19) into Eq. (5.18) one has

dc2

dr
þ lþ 1

r
c2 ¼ ikc1;

dc1

dr

l

r
c1 ¼ ikc2:

ð5:20Þ

By excluding c1 (or c2) from Eq. (5.20) one can find a second-order

differential equation for the Bessel functions (Whittaker & Watson, 1927).

The solutions regular at r! 0 are

106 Edges, nanoribbons and quantum dots

              

       



c1 rð Þ ¼ Jl krð Þ;
c2 rð Þ ¼ iJlþ1 krð Þ:

ð5:21Þ

The energy spectrum k¼ knl can be found from the boundary condition (5.13)

keeping inmind that for the circle a¼j. Thus, the quantization rule for the disc is

Jlþ1 knlRð Þ ¼ BJl knlRð Þ: ð5:22Þ

This leads to a discrete spectrum with a distance between neighbouring

energy levels with a given l of

dl Eð Þ ffi
phv

R
: ð5:23Þ

The density of states of the whole system is an extensive quantity propor-

tional (in two dimensions) to the system area A. Therefore, the average energy

distance (for an arbitrary shape of the billiard, not necessarily for the disc)

can be estimated as

d Eð Þ � 1

N Eð ÞA ; ð5:24Þ

where N(E) is the density of states of the Dirac Hamiltonian per unit area:

N Eð Þ ¼ E

2ph2v2
¼ k

2phv
: ð5:25Þ

It differs from Eq. (1.72) by a factor of 4 (here we do not take into account the

fourfold spin and valley degeneracy for graphene). The semiclassical estimation

(5.24) (see Perenboom, Wyder & Meier, 1981; Halperin, 1986; Stöckmann,

2000) is valid at

k A
p
� 1: ð5:26Þ

For the case of a circular disc Eq. (5.20) gives, taking into account

Eqs. (5.23) (5.25),

d Eð Þ � dl Eð Þ
kR
/ 1

R2
kR� 1ð Þ: ð5:27Þ

There is an important issue relating to the energy-level distribution in finite

systems (Bohr & Mottelson, 1969; Perenboom, Wyder & Meier, 1981;

Stöckmann, 2000). In the case of integrable systems with regular classical

motion of particles it is supposed that it follows the Poisson statistics. It was

shown by Berry & Mondragon (1987) that this is indeed the case for the

spectrum determined by Eq. (5.22). For a generic system with chaotic motion

5.1 The neutrino billiard model 107

              

       



level repulsion takes place, and the probability of finding two very close energy

levels is strongly suppressed. The main physical statement can be seen just

from the two-level quantum-mechanical problem with a 2	 2 Hamiltonian,

for which the splitting of eigenvalues is

D1;2 ¼ H11 H22ð Þ2 þ 4 H12j j2
q

: ð5:28Þ

If the Hamiltonian matrix is diagonal the probability of degeneracy D1,2¼ 0 is

equal to the probability that H11¼H22; if the matrix is off-diagonal and real,

it is the probability that H11¼H22 and H12¼ 0; if it is not real, it is the

probability that H11¼H22, and Re H12¼ 0 and Im H12¼ 0, which is obvi-

ously smaller.

For a generic chaotic system with time-reversal symmetry (this means that

there exists the basis in which the Hamiltonian is real) the distribution of the

neighbouring levels, S¼DE/d(E), is given by the Gaussian orthogonal ensem-

ble (GOE), with the probability function

PGOE Sð Þ ¼ pS

2
exp

pS2

4

� �

; ð5:29Þ

whereas without time-reversal symmetry we have the Gaussian unitary ensem-

ble (GUE), with

PGUE Sð Þ ¼ 32S2

p2
exp

4S2

p

� �

ð5:30Þ

(Bohr&Mottelson, 1969; Perenboom,Wyder&Meier, 1981; Stöckmann, 2000).

The numeral calculations of Berry & Mondragon (1987) demonstrate that

the level distribution for neutrino billiards with chaotic classical motion obeys

the GUE statistics (5.30). This is the consequence of violation of the time-

reversal symmetry, which was discussed above.

5.2 A generic boundary condition: valley mixing

As was discussed in Chapter 1, charge carriers in graphene can be described in

the single Dirac-cone approximation only if all external inhomogeneities are

smooth at the atomic scale. The edges of the terminated honeycomb lattice

are sharp and can, in general, mix the electron states belonging to different

valleys. So, one should use a more general, two-valley Hamiltonian (1.28) (we

will use here the representation (1.27)). The current operator (cf. Eq. (3.3)) is

~̂j ¼ dĤ

d~p
¼ vt0 
~s: ð5:31Þ

108 Edges, nanoribbons and quantum dots

              

       



The most general restriction on the boundary condition generalizing

Eqs. (5.10) and (5.12) in the two-valley case is the absence of the normal

component of the current through the boundary,

C ~n sð Þ~̂j
�

�

�

�

�

�C

D E

¼ 0; ð5:32Þ

at any s.

We will consider, following McCann & Falko (2004) and Akhmerov &

Beenakker (2008), the boundary conditions for the abruptly terminated

honeycomb lattice, with zero probability of finding an electron outside the

graphene flake. The simplest terminations, zigzag and armchair edges, are

shown in Fig. 5.2.

Then the Schrödinger equation inside the flake reads

ihvt0 
~srþ hvM̂0d ~r ~rBð Þ
	 


C ¼ EC; ð5:33Þ

where~r ¼~rB sð Þ in the equation of the boundary line L and M̂0 is an energy-

independent Hermitian matrix. By integrating Eq. (5.33) along an infinitesi-

mal line parallel to the normal ~n sð Þ to the boundary and taking into account

that C¼ 0 outside the flake one finds the boundary condition

ÂC ¼ iM̂0C ð5:34Þ
at~r ¼~rB sð Þ, where

Â ¼ ~n t̂0 
 ~̂s ¼ 1

v
~n �~̂j ð5:35Þ

Â
2 ¼ 1

� �

. Equivalently, the condition (5.34) can be represented as

C ¼ M̂C ~r ¼~rBð Þ; ð5:36Þ

Fig. 5.2. Zigzag and armchair edges of the honeycomb lattice.
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where

M̂ ¼ iÂM̂0: ð5:37Þ

On iterating Eq. (5.36) one can see that

M̂2 ¼ 1: ð5:38Þ

If we require that the Hermitian matrices Â and M̂0 anticommute,

Â; M̂0
� �

¼ 0; ð5:39Þ

the matrix (5.37) turns out to be Hermitian and, due to Eq. (5.38), also unitary:

M̂þ ¼ M̂ ¼ M̂ 1: ð5:40Þ

It also anticommutes with the matrix Â:

Â; M̂
� �

¼ i ^A2M̂0 þ i ÂM̂0
� �

Â ¼ 0 ð5:41Þ

and the condition (5.32) is satisfied automatically in this case:

C
þÂC ¼ C

þM̂þÂM̂C ¼ C
þÂC ¼ 0: ð5:42Þ

Thus, the boundary condition (5.36) with the most general matrix M̂ satisfy-

ing the requirements (5.40) and (5.41) seems to be the most general form of

the boundary conditions at the edges of terminated graphene flakes.

As was proven by Akhmerov & Beenakker (2008) the most general allowed

matrix M̂ can be represented as

M̂ ¼ sinL t̂0 
 ~n1~̂s
� �

þ cosL ~v~̂t
� �


 ~n2~̂s
� �

; ð5:43Þ

where L is an arbitrary real number and ~v, ~n1 and ~n2 are three-dimensional

unit vectors such that~n1 and~n2 are mutually orthogonal and also orthogonal

to ~n (~v is arbitrary).

One can assume that the boundary conditions for the graphene flake as a

whole should be time-reversal-symmetric. Formally this follows from the fact

that the tight-bindingHamiltonian for the honeycomb lattice in real space can be

chosen as a realmatrix. The time-reversal symmetry can be broken by spontan-

eous valley polarization at the edges or by spin polarization plus spin orbit

coupling. So far, there is no experimental evidence for such phenomena.

On generalizing the definition of the time-reversal operation (5.6) to the

case of two valleys one can write

T̂ ¼ t̂y 
 ŝy�K̂: ð5:44Þ
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The matrix M̂ (5.43) commutes with T̂ only at L¼ 0; thus, for the time-

reversal-invariant case

M̂ ¼ ~v~̂t
� �


 ~m~̂s
� �

; ~m?~n: ð5:45Þ

Further specification of the boundary conditions can be achieved by assuming

the nearest-neighbour approximation (which is actually quite accurate for gra-

phene, see Chapter 1). In this approximation there exist only hopping terms

between sublattices,ĤAB, whereas intrasublattice terms vanish:ĤAA ¼ ĤBB ¼ 0

(see Eq. (1.14)). The Schrödinger equation for the two-component wave

function (the components correspond to the sublattices)

ĤABcA ¼ EcB;

Ĥ
þ
ABcB ¼ EcA

ð5:46Þ

has a rigorous electron hole symmetry: cB! cB, E! E transforms the

equation to itself. In the limit of small energies jEj� jtj this means that the

operation R̂ ¼ tz 
 sz changes the sign of the Hamiltonian

R̂ĤR̂ ¼ Ĥ ð5:47Þ

or, equivalently (keeping in mind that R̂2 ¼ 1),

Ĥ; t̂z 
 ŝz
� �

¼ 0: ð5:48Þ

This symmetry is an approximate one for real graphene but this approximation

is quite good due to the smallness of the second-neighbour hopping, jt 0/tj � 0.025

(see Section 1.2). If we require (5.48), there are only two classes of allowed

boundary conditions: 1ð Þ ~v jjOz; ~m jjOz, for which

M̂ ¼ �t̂z 
 ŝz; ð5:49Þ

and (2) vz¼mz¼ 0, for which

M̂ ¼ cosj t̂x þ sinj t̂y
� �


 sx ð5:50Þ

(we assume that the edge is along the x-axis, ~n jjOy, and, thus, ~m jjOx).

Boundary conditions of the type (5.36) and (5.49) are called zigzaglike,

whereas those of the type (5.36) and (5.50) are called armchairlike, for reasons

that will be discussed in the next section. There is an important result

(Akhmerov & Beenakker, 2008; Wimmer, Akhmerov & Guinea, 2010) that

zigzaglike boundary conditions are generic whereas armchairlike boundary

conditions occur only for some exceptional orientation of the edges.
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5.3 Boundary conditions for a terminated honeycomb lattice

Here we present, following Akhmerov & Beenakker (2008), a microscopic

derivation of the boundary conditions for a terminated honeycomb lattice in

the nearest-neighbour approximation. The geometry of our problem is clear

from Fig. 5.3. The translation vector along the boundary is

~T ¼ n~R1 þm~R2; ð5:51Þ
where

~R1;2 ¼
a

2
3;

p

� 1
� �

ð5:52Þ

are elementary translation vectors and n and m are integers. The number N

of missing sites and the number N0 of dangling bonds per period are larger

than or equal to nþm. Figure 5.3(d) shows a minimal boundary where

N¼N 0¼ nþm.

A B

y

x

R2

R1
R3

T

T T

(a) (b)

(c) (d)

Fig. 5.3. (a) A honeycomb lattice constructed from a unit cell (grey rhombus)
containing two atoms (labelled A and B), translated over lattice vectors R1

and R2. Panels (b)–(d) show three different periodic boundaries with the
same period T¼ nR1 þmR2. Atoms on the boundary (connected by thick
solid lines) have dangling bonds (thin-grey-line segments) to empty neigh-
bouring sites (open circles). The number N of missing sites and the number N0

of dangling bonds per period are nþm. Panel (d) shows a minimal boundary,
for which N ¼ N0 ¼ n þ m. (Reproduced with permission from Akhmerov &
Beenakker, 2008.)
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TheSchrödinger equation for the tight-bindingmodel in the nearest-neighbour

approximation reads

cB ~rð Þ þ cB ~r ~R1

� �

þ cB ~r ~R2

� �

¼ ecA ~rð Þ;

cA ~rð Þ þ cA ~rþ ~R1

� �

þ cA ~rþ ~R2

� �

¼ ecB ~rð Þ;
ð5:53Þ

where e¼E/t is the dimensionless energy and subscripts A and B label

sublattices.

The angle between the translation vector ~T and the armchair orientation

(the direction Ox in Fig. 5.3(a)) is

j ¼ arctan
1

3
p n m

nþm

� �

: ð5:54Þ

Owing to symmetry with respect to rotations at � p/3 we can restrict our-

selves to the case jjj � p/6 only.

The boundary condition is the requirement that the wave function vanishes

at the empty sites. One can assume that it depends smoothly on the energy e.

We are interested in the case of small e (the states close to the Dirac points)

and, thus, can put e¼ 0 in Eq. (5.53). So, as a first step one can find zero-

energy modes for the terminated honeycomb lattice. Owing to the transla-

tional invariance along the boundary one can use Bloch’s theorem and

require that

cA;B ~rþ ~T
� �

¼ eikcA;B ~rð Þ ð5:55Þ

with a real 0 � k< 2p.

For the behaviour normal to the boundary, we assume that

cA;B ~rþ ~R3

� �

¼ lcA;B ~rð Þ; ð5:56Þ

where ~R3 ¼ ~R1
~R2 is antiparallel to the y-axis in Fig. 5.3(a). This lattice

vector has a nonzero component a cosj > a 3
p

=2 perpendicular to ~T. For the

states localized at the edge jlj< 1 and for propagating states jlj ¼ 1; of course,

the case jlj>1 is meaningless since the corresponding wave function cannot

be normalized. If jlj< 1 the solution satisfying Eq. (5.56) has a decay length

in the direction normal to ~T of

l ¼ a cosj

lnjlj : ð5:57Þ
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Taking into account that ~R1 ¼ ~R2 þ ~R3, one can rewrite Eq. (5.53) at e¼ 0 as

cB ~rð Þ þ cB ~r ~R2
~R3

� �

þ cB ~r ~R2

� �

¼ 0;

cA ~rð Þ þ cA ~rþ ~R2 þ ~R3

� �

þ cA ~rþ ~R2

� �

¼ 0:
ð5:58Þ

On substituting Eq. (5.56) into Eq. (5.58) one finds

cB ~rþ ~R2

� �

¼ 1

1þ l
cB ~rð Þ;

cA ~rþ ~R2

� �

¼ 1þ lð ÞcA ~rð Þ:
ð5:59Þ

Using Eqs. (5.56) and (5.55) together, we have, for any integer p and q,

cB ~rþ p~R2 þ q~R3

� �

¼ lq 1 lð Þ p
cB ~rð Þ;

cA ~rþ p~R2 þ q~R3

� �

¼ lq 1 lð ÞpcA ~rð Þ:
ð5:60Þ

Now we have to recall the Bloch theorem (5.55) for

~T ¼ n ~R2 þ ~R3

� �

þm~R2 ¼ nþmð Þ~R2 þ n~R3: ð5:61Þ

Thus, we have two equations relating k and l:

1 lð Þmþn ¼ eikln ð5:62Þ

for the sublattice A and

1 lð Þmþn ¼ eiklm ð5:63Þ

for the sublattice B. One needs to find all solutions l of Eqs. (5.62) and (5.63)

for a given k satisfying the conditions jlj � 1.

A general zero-energy state can be represented as

cA ¼
X

MA

p 1

apcp;

cB ¼
X

MB

p 1

a0pc
0
p;

ð5:64Þ

where MA and MB are the numbers of solutions of Eqs. (5.62) and (5.63)

within the unit circle, respectively, and cp and c0p are the corresponding

eigenstates. The coefficients ap and a 0p should be chosen in such a way that

cA and cB vanish at missing sites from the sublattices A and B.
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The Dirac limit corresponds to the case of small k. Explicit calculations for

the case k¼ 0 give the result (Akhmerov and Beenakker, 2008)

MA ¼
2nþm

3
þ 1;

MB ¼
2mþ n

3
þ 1:

ð5:65Þ

These solutions include also the values

l� ¼ exp � 2pi

3

� �

ð5:66Þ

corresponding to the propagating modes; for all other modes jlj< 1, so they

are localized at the edge. The corresponding eigenstate is expð�i~K~rÞ, with

~K ¼ 4p

3a2
~R3: ð5:67Þ

Thus, the general zero-energy mode at k¼ 0 can be represented as

cA ¼ c1 exp i~K~r
� �

þ c4 exp i~K~r
� �

þ
X

MA 2

p 1

apcp;

cB ¼ c2 exp i~K~r
� �

þ c3 exp i~K~r
� �

þ
X

MB 2

p 1

a 0pc
0
p:

ð5:68Þ

The four amplitudes (c1, ic2, ic3, c4) correspond to the four components

of the wave function (1.27) in the Dirac limit; c1 and c2 are associated with

the valley K, c3 and c4 with the valley K0.
At the same time, there areNA conditionscA¼ 0 at themissing sites belonging

to the sublattice A and NB conditions cB¼ 0 at the missing sites belonging to

the sublattice B (NA and NB are the numbers of missing sites belonging to the

corresponding sublattice).

For the minimal boundary, NA¼ n and NB¼m. At the same time, for

n>m one hasMA� n conditions cA¼ 0 at some sites. The only way to satisfy

them is to require that cA¼ 0 on the whole boundary, including c1¼c4¼ 0.

At the same time, MB�mþ 2, so c2 and c3 remain undetermined.

This corresponds to the zigzag boundary conditions Eq. (5.49), with theminus

sign. Similarly, for n<m one has the zigzag boundary conditions with the plus

sign. Only at n¼m does one have MA¼MB¼ nþ 1> n such that one has the

same condition for sublattices A and B. All ci are nonzero in this case, with

c1j j ¼ c4j j; c2j j ¼ c3j j ð5:69Þ

(armchair boundary conditions (5.50)).
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So, at least for the case of minimal edges, one can prove that the armchair

boundary conditions are exceptional whereas the zigzag ones are generic.

This result seems to be correct also for non-minimal edges, as well as for the

case of disorder at the edges (Martin & Blanter, 2009; Wimmer, Akhmerov &

Guinea, 2010).

For the case n>m, the number of independent zero-energy modes per unit

length is

r ¼MA n

~T
�

�

�

�

¼ m nj j
3a n2 þ nmþm2
p ¼ 2

3a
sinjj j ð5:70Þ

(Akhmerov & Beenakker, 2008; Wimmer, Akhmerov & Guinea, 2010).

At j¼ 0 (armchair boundaries) there are no such states. The existence of

the zero-energy modes and the corresponding sharp peak in the density of

states at zigzag edges was first found numerically by Nakada et al. (1996).

It will be analysed in more detail in the next sections.

Akhmerov & Beenakker (2008) have demonstrated that the infinite-mass

boundary condition (5.13) withB¼�1 can be obtained in the limit of an infinite

staggered field (difference of on-site energies between sublattices A and B at

the edge). The sign of B is determined by the sign of this staggered field.

5.4 Electronic states of graphene nanoribbons

The previous consideration was a bit formal but the result is quite simple. For

the case of pure zigzag edges allmissing atoms belong to sublattice A only (or

sublattice B only), thus the corresponding components of the wave function

for the two valleys, K and K0, should vanish at the boundary. If the numbers

of missing atoms belonging to A and B are not equal, the boundary condi-

tions remain the same, depending on the majority of the atoms: ‘the winner

takes all’. Only in the exceptional case in which the numbers of missing atoms

from A and B coincide exactly (armchair edges) are all four components of

the Dirac spinors finite at the edge, satisfying the two relations (5.69).

If we have a nanoribbon of a constant width L (jyj �L/2) with zigzag

edges, one edge corresponds to the missing atoms A and the other to the

missing atoms B. The boundary conditions are

u y ¼ L

2

� �

¼ 0;

v y ¼ L

2

� �

¼ 0;

ð5:71Þ
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where u is c1 or c4 and v is c2 or c3. In this case the valleys are decoupled, so

in the Dirac approximation we can consider them independently. For the

valley K, the Schrödinger equation reads

q

qx
þ i

q

qy

� �

u x; yð Þ ¼ ikv x; yð Þ;

q

qx
i
q

qy

� �

v x; yð Þ ¼ iku x; yð Þ;
ð5:72Þ

where k ¼ E=ðhvÞ. For the valley K0, the signs before q/qy are exchanged. The
analytic solution of Eq. (5.72) with the boundary conditions (5.71) has been

found by Brey & Fertig (2006).

Let us try the solutions as

u x; yð Þ ¼ exp ikxxð Þu yð Þ;
v x; yð Þ ¼ exp ikxyð Þv yð Þ;

ð5:73Þ

where u and v satisfy a system of two linear ordinary differential equations

with constant coefficients:

kx þ
d

dy

� �

u yð Þ ¼ kv yð Þ;

kx
d

dy

� �

v yð Þ ¼ ku yð Þ:
ð5:74Þ

The solution can be tried as

u yð Þ ¼ A exp zyð Þ þ B exp zyð Þ;
v yð Þ ¼ C exp zyð Þ þD exp zyð Þ;

ð5:75Þ

where

z ¼ k2x k2
q

ð5:76Þ

can be either real (for evanescent waves) or imaginary (for propagating

waves). On substituting Eq. (5.75) into Eq. (5.74) and taking into account

Eq. (5.71) one finds a dispersion relation for the waves in the nanoribbon:

j zð Þ ¼ kx z

kx þ z
¼ exp 2Lzð Þ: ð5:77Þ

Graphical solution of Eq. (5.77) (Fig. 5.4) shows that a real solution (other

than the trivial one, z=0) exists if

kx >
1

L
: ð5:78Þ

5.4 Electronic states of graphene nanoribbons 117

              

       



Indeed, at this condition j(z)� 1 2z/kx is larger than exp( 2Lz)� 1 2 Lz

at small z. At the same time, j(kx)¼ 0< exp( 2Lkx), thus the curves should

cross. Otherwise, there are no solutions.

Equation (5.78) is the condition of existence of the edge state; for the

semispace (L!1) it always exists, with the decay decrement z¼ kx, in

agreement with the consideration of the previous section. For a finite width

L, those states with energies

Es ¼ �hv k2x z2
q

ð5:79Þ

are linear combinations of the states localized on the left and right edges of

the ribbon. There are no solutions at kx< 0, so, for a given valley, these edge

states can propagate only in one direction. Conversely, for the valley K0 the
solutions exist only for kx< 0. Numerical calculations for honeycomb-lattice

nanoribbons (Brey & Fertig, 2006; Peres, Castro Neto & Guinea, 2006) show

that these edge states connect the valleys K and K0 (Fig. 5.5).
For the case of purely imaginary z¼ iky Eq. (5.77) can be rewritten as

kx ¼ ky cot kyL
� �

; ð5:80Þ

which gives ‘bulk’ standing waves with discrete values of ky and energy

Eb ¼ �hv k2x þ k2y

q

: ð5:81Þ

For the case of armchair nanoribbons the amplitudes of the components of

wave functions belonging to different valleys are the same but the phases can

z

– kx kx

kxL = 1.6

lo
g
 (

f
(z

))

1

(a)

lo
g
 (

f
(z

))

1

(b)

z

– kx kx

kxL = 0.5

Fig. 5.4. Graphical solution of Eq. (5.77) (the logarithm of both sides is
taken). If the condition (5.78) is satisfied there is a nontrivial (z 6¼ 0) solution
(a); otherwise, z ¼ 0 is the only solution (b).
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differ (see Eq. (5.69)). A detailed analysis (Brey & Fertig, 2006) results in the

following boundary conditions:

u
L

2

� �

¼ u 0
L

2

� �

;

v
L

2

� �

¼ v
L

2

� �

;

u
L

2

� �

¼ exp 2pinð Þu 0 L

2

� �

;

v
L

2

� �

¼ exp 2pinð Þv 0 L

2

� �

;

ð5:82Þ

where the functions with (without) primes correspond to the states from

valley K0 (K) and n ¼ 0;� 2
3

depending on the number of rows in the

nanoribbons; n¼ 0 if this number is 3p (p is an integer) and n ¼ � 2
3
if it is

3p � 1. In this case there are no edge states with real z, the wave functions of

the bulk states are very simple, namely

uj yð Þ ¼ ivj yð Þ ¼
1

2L
p exp ikjy

� �

; ð5:83Þ

u 0j yð Þ ¼ iv 0j yð Þ ¼ 1

2L
p exp ikjy

� �

;

and kj is discrete:

kj ¼
jþ nð Þp
L

; j ¼ 0; � 1; . . . ð5:84Þ

E
n
e
rg

y
/t

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

Zigzag.

L = 14 x (3)1/2a0

K K�

Fig. 5.5. The energy spectrum for zigzag-terminated graphene nanoribbon
with 56 atoms per unit cell. (Reproduced with permission from Brey &
Fertig, 2006.)
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5.5 Conductance quantization in graphene nanoribbons

For the case of zigzag edges, electron motion along the edges is coupled

with that in the perpendicular direction, see Eq. (5.80). This coupling leads

to interesting consequences for the electron transport in nanoribbons with

varying width, such as those with nanoconstrictions (Fig. 5.6).

Let us consider a ribbon with a slowly varying width L(x) assuming that

dL

dx

�

�

�

�

�

�

�

�

� 1: ð5:85Þ

For simplicity, we will assume mirror symmetry so that the edges correspond

to y¼�L(x)/2 (Fig. 5.6). For the case of the Schrödinger equation for

conventional nonrelativistic electrons

h2

2m
r2

C x; yð Þ ¼ EC x; yð Þ ð5:86Þ

with boundary conditions

C y ¼ �L xð Þ
2

� �

¼ 0 ð5:87Þ

(impenetrable walls) the electron states can be considered in the adiabatic

approximation (Glazman et al., 1988; Yacoby & Imry, 1990). Owing to the

condition (5.87) one can try having the wave function as

C x; yð Þ ¼ w xð Þjx yð Þ; ð5:88Þ

where

jx yð Þ ¼ 2

L xð Þ

s

sin
pn 2yþ L xð Þ½ �

L xð Þ

� �

ð5:89Þ

is the standing wave of transverse motion satisfying the boundary condition

(5.87) and depending on x as a parameter via L(x). It can be proven (Glazman

L(x) x

y

Fig. 5.6. A sketch of a graphene nanoribbon with a smoothly varying width.

120 Edges, nanoribbons and quantum dots

              

       



et al., 1988; Yacoby & Imry, 1990) that the wave function of longitudinal

motion satisfies the Schrödinger equation

d 2wn xð Þ
dx2

þ k2 k2n xð Þ
� �

wn xð Þ ¼ 0; ð5:90Þ

where k2 ¼ 2mE=h2 and

kn xð Þ ¼ pn

L xð Þ : ð5:91Þ

Owing to Eq. (5.85) one can use the semiclassical approximation (Landau &

Lifshitz, 1977). At k> kn(x) the solutions of Eq. (5.90) are propagating waves

with an exponentially small probability of reflection, whereas for the classic-

ally forbidden regions k< kn(x) the electron states decay quickly. This means

that the electron transport in the adiabatic approximation is determined by

the minimal width of the constriction Lmin: all states with

n <
kLmin

p
ð5:92Þ

have transmission coefficients close to unity and all states with larger n do not

contribute to the electron transmission at all. According to the Landauer

formula (see Chapter 3) the conductance in the adiabatic regime should be

quantized, with an exponential accuracy of

G ¼ 2e2

h
n; ð5:93Þ

where n is an integer and the factor of 2 is due to spin degeneracy. Each

transverse mode corresponds to an independent channel of transmission.

For the case of graphene nanoribbons the situation is more complicated

(Katsnelson, 2007b). We will consider here only the case of zigzag boundary

conditions, since they are generic for inhomogeneous nanoribbons as dis-

cussed above.

Thus, one can solve the equations (5.72) with x-dependent boundary

conditions (5.71):

u x; y ¼ L xð Þ
2

� �

¼ 0;

v x; y ¼ L xð Þ
2

� �

¼ 0:

ð5:94Þ

Following Katsnelson (2007b) we expand a general solution in the standing

waves with kx¼ 0. For this case,
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ky � kj ¼
pj

L
; j ¼ � 1

2
;� 3

2
; . . . ð5:95Þ

(cf. Eq. (5.80)) and the eigenfunctions can be written explicitly:

uj yð Þ ¼
1

L
p cos kj y

L

2

� �� �

;

vj yð Þ ¼
1

L
p sin kj y

L

2

� �� �

:

ð5:96Þ

Instead of Eq. (5.88) let us use the most general expansion

u x; yð Þ ¼
X

j

cj xð Þu xð Þ
j yð Þ;

v x; yð Þ ¼
X

j

cj xð Þv xð Þ
j yð Þ;

ð5:97Þ

where u(x) and v(x) are the functions (5.96) with the replacement L!L(x):

u
xð Þ
j yð Þ ¼ 1

L xð Þ
p cos pj

y

L xð Þ
1

2

� �� �

;

v
xð Þ
j yð Þ ¼ 1

L xð Þ
p sin pj

y

L xð Þ
1

2

� �� �

:

ð5:98Þ

The functions (5.98) satisfy by construction the boundary conditions. On

substituting the expansion (5.97) into Eq. (5.72) and multiplying the first

equation by hvyj and the second one by hujj one finds
X

j 0

dcj 0

dx
vj
�

�vj 0
� �

þ cj 0 vj

�

�

�

�

dvj 0

dx

� �� �

¼ i
X

j 0
k kj 0
� �

cj 0 vj
�

�uj 0
� �

;

X

j 0

dcj 0

dx
uj
�

�uj 0
� �

þ cj 0 uj

�

�

�

�

duj 0

dx

� �� �

¼ i
X

j 0
k kj 0
� �

cj 0 uj
�

�vj 0
� �

:

ð5:99Þ

These equations are formally exact. As a first step to the adiabatic approxi-

mation, one should neglect the terms with

vj

�

�

�

�

dvj 0

dx

� �

and uj

�

�

�

�

duj 0

dx

� �

;

which is justified by the smallness of dL/dx, as in the case of nonrelativistic

electrons (Yacoby & Imry, 1990).

To proceed further we need to calculate the overlap integrals

f1 j f2h i ¼
ð

L=2

L=2

dyf
1f2
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for different basis functions:

uj uj 0
�

�

� �

¼ 1

2
djj 0 þ dj; j 0
� �

;

vj vj 0
�

�

� �

¼ 1

2
djj 0 dj; j 0
� �

;

uj vj 0
�

�

� �

¼ vj 0 uj
�

�

� �

¼

1

p j 0 jð Þ ; j 0 j ¼ 2nþ 1,

1

p j 0 þ jð Þ ; j 0 j ¼ 2n,

8

>

>

>

<

>

>

>

:

ð5:100Þ

where n is an integer. On substituting Eq. (5.100) into Eq. (5.99) and neglect-

ing the nonadiabatic terms within the matrix elements of the operator d/dx,

we obtain after simple transformations

dcj xð Þ
dx

¼ 2i

p

X 0
j 0

k kj 0 xð Þ
jþ j 0

cj 0 xð Þ; ð5:101Þ

where the sum is over all j 0 such that j 0 j is even.

Until now we have employed transformations and approximations that

are identical to those used in the case of nonrelativistic electrons. However,

we still have a coupling between different standing waves, so we cannot

prove that the electron transmission through the constriction is adiabatic.

To prove this we need one more step, namely a transition from the discrete

variable j to a continuous one and a replacement of the sums on the right-

hand side of Eq. (5.101) by integrals:
P 0

j 0 . . .! 1
2
P
Ð

dy . . ., where P is the

symbol of principal value. This step is justified by assuming that kL� 1, i.e.,

it is valid only for highly excited states. For low-lying electron standing waves

it is difficult to see any way to simplify appreciably the set of equations

(5.101) for the coupled states.

For any function f(z) that is analytic in the upper (lower) complex half-

plane one has

ð

1

1

dx f xð Þ 1

x x1 � i0
¼ 0 ð5:102Þ

or, equivalently,

ð

1

1

dx f xð Þ P

x x1
¼ �ipf x1ð Þ: ð5:103Þ
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Assuming that cj(x) is analytic in the lower half-plane as a function of the

complex variable j one obtains, instead of Eq. (5.101),

dcj xð Þ
dx

¼ kþ kj xð Þ
	 


c j xð Þ: ð5:104Þ

Similarly, taking into account that c j(x) is analytic in the upper half-plane as

a function of the complex variable j we have

dc j xð Þ
dx

¼ kj xð Þ k
	 


cj xð Þ: ð5:105Þ

Finally, ondifferentiatingEq. (5.104)with respect tox, neglecting the derivatives

of kj(x) due to the smallness of dL/dx and taking into accountEq. (5.105) we find

d2cj xð Þ
dx2

þ k2 k2j xð Þ
h i

cj xð Þ ¼ 0: ð5:106Þ

Further analysis completely follows that for the nonrelativistic case. The

potential is semiclassical for the case of smoothly varying L(x). Therefore,

the transmission coefficient is very close to unity if the electron energy exceeds

the energy of the jth level in the narrowest place of the constriction and is

exponentially small otherwise. Standard arguments based on the Landauer

formula prove the conductance quantization in this situation.

At the same time, for the lowest energy levels the replacement of sums by

integrals in Eq. (5.101) cannot be justified and thus the states with different js

are in general coupled even for a smooth constriction (Eq. (5.85)). Therefore

electron motion along the strip is strongly coupled with that in the perpendicu-

lar direction and different electron standing waves are essentially entangled.

In this situation there is no general reason to expect sharp jumps and well-

defined plateaux in the energy dependence of the conductance. This means that

the criterion of the adiabatic approximation is more restrictive for the case of

Dirac electrons than it is for nonrelativistic ones. The formal reason is an

overlap between components of the wave functions with different pseudospins

or, equivalently, between the hole component of the state j and the electron

component of the state j 0 6¼ j. This conclusion (Katsnelson, 2007b) seems to be

confirmed by the numerical simulations of Muños-Rojas et al. (2008).

5.6 The band gap in graphene nanoribbons with

generic boundary conditions

One has to keep in mind that the terminated honeycomb lattice is a special case

of graphene edges. Density-functional calculations show that the reconstructed

‘5 7’ edge (Fig. 5.7) has an energy lower than those both of armchair and of
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zigzag edges (Koskinen, Malola & Häkkinen, 2008). The reconstruction to

this low-energy state requires the overcoming of energy barriers, so the zigzag

edges are metastable (Kroes et al., 2011), but under some circumstances it will

definitely happen. Zigzag edges are very chemically active, so they will bind

hydrogen, oxygen or hydroxyl groups (see, e.g., Boukhvalov & Katsnelson,

2008; Bhandary et al., 2010). Lastly, the density of states peak due to zero-

energymodesmeans ferromagnetic instability (Fujita et al., 1996; Son, Cohen&

Louie, 2006a; see also Section 12.3). All of this will substantially modify the

boundary conditions. The most general form is given by Eqs. (5.36) and

(5.45). It assumes only time-reversal symmetry. Time-reversal symmetry can

be broken by ferromagnetic ordering; however, the latter can exist in one-

dimensional systems at zero temperature only. At finite temperatures one has,

instead, a superparamagnetic state with a finite correlation length x, which is

just several interatomic distances at room temperature (Yazyev & Katsnelson,

2008). If all essential sizes of the problem (e.g., the width of nanoribbons L) are

larger than x then the system should be considered time-reversal-invariant.

The most general boundary conditions for the nanoribbons are therefore

C x; y ¼ L

2

� �

¼ ~n1�~̂t
� �


 ~n1�~̂s
� �

C x; y ¼ L

2

� �

;

C x; y ¼ L

2

� �

¼ ~n2�~̂t
� �


 ~n2�~̂s
� �

C x; y ¼ L

2

� �

;

ð5:107Þ

where~ni are three-dimensional unit vectors (no restrictions) and ~ni are three-

dimensional unit vectors perpendicular to the y-axis:

~n1 ¼ cos y1; 0; sin yð Þ;
~n2 ¼ cos y2; 0; sin y2ð Þ:

ð5:108Þ

Valley symmetry implies that only the relative directions of the vectors~n1 and

~n2 are essential. Thus, the problem is characterized by three angles: y1, y2 and

the angle g between~n1 and~n2.

The most general dispersion relation E¼E(k) for the propagating waves

C x; yð Þ / exp ikxþ iqyð Þ ð5:109Þ

Fig. 5.7. A sketch of a reconstructed 5–7 zigzag edge.
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satisfying the boundary conditions (5.107) has been obtained by Akhmerov &

Beenakker (2008). It reads

(5.110)

cos y1 cos y2 coso cos2O
� �

þ coso sin y1 sin y2 sin
2
O

sinO sinO cos gþ sino sin y1 y2ð Þ½ � ¼ 0;

where

o2 ¼ 4L2 E2

h2v2
k2

� �

and

cosO ¼ hvk

E
: ð5:111Þ

Different solutions of Eq. (5.110) correspond to different standing waves with

discrete qn. Analysis of this equation show that there is a gap in the energy

spectrum if g 6¼ 0, p (which means that valleys are coupled at the boundaries)

or at g¼ p, sin y1 sin y2> 0, or at g¼ 0, sin y1 sin y2< 0 (Akhmerov &

Beenakker, 2008). One can see that the case of zigzag-terminated edges when

states with arbitrarily small energy, up to E¼ 0, exist is very exceptional.

For generic boundary conditions, the gap is of the order of

D ffi hv

L
: ð5:112Þ

A detailed analysis of the gap, both in a tight-binding model and in realistic

density-functional calculations, was carried out by Son, Cohen& Louie (2006b)

(see also, e.g., Wassmann et al., 2008).

The gap opening in nanoribbons is very important for applications.

It allows one to overcome restrictions due to the Klein tunnelling and build

a transistor that can really be locked by a gate voltage (Han et al., 2007;

Wang et al., 2008; Han, Brant & Kim, 2010).

5.7 Energy levels in graphene quantum dots

Nanoribbons are restricted in one dimension, therefore their electron

spectra consist of bands En(k). It is possible to make graphene devices in

which electrons are confined in two dimensions graphene quantum dots

(Ponomarenko et al., 2008; Stampfer et al., 2008; Güttinger et al., 2009;

Molitor et al., 2010; Zhang et al., 2010). Figure 5.8 (Ponomarenko et al.,

2008) shows an example of such a device, together with the voltage depend-

ence of the differential conductance G through the device. Oscillations of
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G are due to the discreteness of the electron energy spectrum in the dot. First

of all, there is a classical electrostatic effect, namely the dependence of the

energy on the total charge Q,

EC Qð Þ ¼ Q2

2C
; ð5:113Þ

where C is the capacitance of the dot. When the electron tunnels to the dot or

from the dot the charge, Q, is changed by �e. This effect is known as
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Fig. 5.8. A graphene-based single-electron transistor. The conductance G of
a device shown in the insert in the upper right corner is given as a function
of the gate voltage, at temperature T ¼ 0.3K. Two panels in (b) show
the picture with different resolutions. (Reproduced with permission from
Ponomarenko et al., 2008.)
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Coulomb blockade, see Kouwenhoven, Marcus & McEuen (1997). Apart

from this, there is a discreteness of the single-electron energy spectrum super-

imposed on the Coulomb-blockade peaks. The sharp dependence of G on the

gate voltage allows one to use the device as a single-electron transistor

(Ponomarenko et al., 2008; Stampfer et al., 2008). The data extracted from

the measurements clearly show the effect of level repulsion which was

discussed in Section 5.1; this means that the single-electron spectrum of real

graphene quantum dots is certainly chaotic (Ponomarenko et al., 2008; De

Raedt & Katsnelson, 2008). The function P(S) (cf. Eqs. (5.29) and (5.30))

extracted from the experimental data by Ponomarenko et al. (2008) for a

40-nm graphene quantum dot is shown in Fig. 5.9. Its decrease at small S is

a manifestation of the level repulsion. At the same time, it is difficult to

distinguish between the cases of orthogonal and unitary ensembles.

Theoretically, the distinction depends on the probability of intervalley scatter-

ing. If it is large enough, then, due to atomic-scale inhomogeneity at the edges,

the system is time-reversal-invariant, and one should expect the behaviour

typical for the Gaussian orthogonal ensemble, Eq. (5.29). This is obvious

already from the fact that, in the absence of a magnetic field, the tight-binding

Hamiltonian can be chosen to be real. At the same time, if the inhomogeneities

at the edges are smooth enough and intervalley scattering is therefore weak,

the situation should be close to the case of a neutrino billiard (Section 5.1) and

a unitary ensemble is to be expected. This can indeed be the case, since for

chemical passivation of the edges the electronic structure changes smoothly

within a rather broad strip near the edges (Boukhvalov & Katsnelson, 2008).

Theoretical discussions of the energy-level statistics in graphene quantum dots

can be found in Wurm et al. (2009), Libisch, Stampfer & Burgdörfer (2009),

Wimmer, Akhmerov & Guinea (2010) and Huang, Lai & Grebogi (2010).
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Fig. 5.9. The level-spacing distribution extracted from experimental data
on a graphene 40-nm quantum dot. (Reproduced with permission from
De Raedt & Katsnelson, 2008.)
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5.8 Edge states in magnetic fields and the anomalous

quantum Hall effect

Now we can come back to the physics of the half-integer quantum Hall effect

discussed in Chapter 2. Our analysis in Section 2.9 was based on the solution

of the quantum-mechanical problem for bulk graphene. There is an alterna-

tive approach to the quantum Hall effect that is based on the analysis of the

edge states of electrons in a magnetic field (Halperin, 1982; MacDonald &

Středa, 1984).

Let us start with the classical picture of electron motion in a magnetic field.

In two dimensions, the electron orbits are closed circles (Larmor rotation).

Depending on the direction of the magnetic field, all electrons in the bulk

rotate either clockwise or counterclockwise. However, for the electrons with

centres of their orbits close enough to the boundary, reflections form a

completely different kind of trajectory, skipping orbits (Fig. 5.10). They

possess a magnetic moment opposite to that of the ‘bulk’ orbits and, actually,

exactly compensate for the latter, so that, in agreement with a general

theorem, the classical system of electrons can be neither paramagnetic nor

diamagnetic (Vonsovsky & Katsnelson, 1989). In quantum theory, the skip-

ping orbits are associated with the edge states localized near the boundary

and carrying the current. These states are chiral since only one direction of

propagation is allowed. Therefore they are protected against localization

by disorder; the situation is similar to the Klein tunnelling and forbidden

Fig. 5.10. Skipping orbits of electrons due to the combination of Larmor
rotation in a magnetic field and reflection from the edges.
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back-scattering for massless Dirac fermions (Chapter 4). Simply speaking,

there are no other states with the same energy for electrons to be scattered to.

Thus, if one assumes that all bulk states are localized there is still a current

being carried by the skipping electrons, with a contribution to the conduct-

ance of e2/h per spin (complete transmission). This gives an alternative

explanation of the quantum Hall effect (Halperin, 1982).

A topological analysis shows that the number of edge states at the border

between a quantum Hall insulator and vacuum is equal to the integer in

(2.181) and, thus, ‘bulk’ and ‘edge’ approaches to the quantum Hall effect

give the same results for sxy (Hatsugai, 1993; Kellendonk & Schulz-Baldes,

2004; Prodan, 2009).

The counting of the edge states is therefore an alternative way to explain

the anomalous (‘half-integer’) quantum Hall effect in graphene (Abanin,

Lee & Levitov, 2006; Hatsugai, Fukui & Aoki, 2006). We will use here the

approach of the first of these works, which is based on a solution of the Dirac

equation in a magnetic field (the second one uses an analysis of the geometry

of the honeycomb lattice).

Let us assume that graphene fills the semispace x< 0. The solutions of the

Dirac equation for the valley K satisfying the conditions ci (x)! 0 at x! 1
are given by Eqs. (2.45) and (2.46),

c1 Xð Þ ¼ Dn Xð Þ;
c2 Xð Þ ¼ ieDn 1 Xð Þ;

ð5:114Þ

where n¼ e2 and X is given by Eqs. (2.40) and (2.41). For the valley K0

the results are the same but with the replacement c1 ! c 02, c2 ! c 01 (see

Eqs. (1.27) and (1.28)), thus,

c 01 Xð Þ ¼ ieDn 1 Xð Þ;
c 02 Xð Þ ¼ Dn Xð Þ:

ð5:115Þ

The eigenenergy e can be found from the boundary conditions. For example,

for the armchair-terminated edge, one needs to put

c1 x ¼ 0ð Þ ¼ c 01 x ¼ 0ð Þ;
c2 x ¼ 0ð Þ ¼ c 02 x ¼ 0ð Þ:

ð5:116Þ

For the case of zigzag-terminated edges, the valleys are decoupled, and the

conditions are

c1 x ¼ 0ð Þ ¼ 0;

c 01 x ¼ 0ð Þ ¼ 0
ð5:117Þ
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(for the zigzag edge with missing A atoms). Then, Eqs. (5.114) and (5.115)

give the energy (2.26) depending on the coordinate of the centre of the orbit

x0 (2.40), or, equivalently, on the wave vector ky along the edge.

It is easier to analyse these solutions after transformation of the original

problem to the Schrödinger equation for a double-well potential (Abanin,

Lee & Levitov, 2006; Delplace & Montambaux, 2010). The Hamiltonian ^H 2

(2.33) can be represented as

Ĥ
2¼ 2h ej jBv2

c
Q̂; ð5:118Þ

where

Q̂ ¼ 1

2

d 2

dx2
þ 1

2
x x0ð Þ2 1

2
sztz;

where x and x0 are in units of the magnetic length lB and sz¼þ1 for

components corresponding to the sublattice A and sz¼ 1 for components

corresponding to the sublattice B, with tz¼�1 for the valley K and K0,
respectively.

For the case of zigzag edges, the valleys and sublattices are decoupled.

The eigenvalues of the operators Q̂ for the valleys K and K0 differ by 1. The

sublattices are also decoupled, but the edge states for the B sublattice are

associated with another edge.

The eigenstates of the problem

Q̂c xð Þ ¼ e2c xð Þ ð5:119Þ

with the boundary condition (5.117) are the same as the antisymmetric

eigenstates for the symmetric potential

Q̂ ¼ 1

2

d 2

dx2
þ V xð Þ; ð5:120Þ

V xð Þ ¼ 1

2
xj j x0ð Þ2 � 1

2
ð5:121Þ

with � signs for the valleys K and K0, respectively (see Fig. 5.11).

If x0j j � 1 the potential wells are well separated and the probability of

tunnelling between the wells is exponentially small, for

e2 � 1

2
x20: ð5:122Þ
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Then, in zeroth-order approximation, the eigenvalues are the same as for

independent walls,

e2n ¼ nþ 1

2
� 1

2
ð5:123Þ

(n¼ 0, 1, 2, . . .). Tunnelling leads to the splitting of each eigenvalue for

symmetric and antisymmetric states,

de2n ¼ �Dn ð5:124Þ

with

Dn / exp

ð

x2

x1

dx V xð Þ en2
q

2

4

3

5; ð5:125Þ

where x1,2 are the classical turning points: V x1;2
� �

¼ e2n. One needs to choose

the plus sign in Eq. (5.124) corresponding to the antisymmetric eigenfunctions.

For the minus sign in Eq. (5.121) (valley K) one has some growing

dependence of En on the function jx0j/lB (the larger jx0j the smaller the

shift) starting from E¼ 0. Starting from the first Landau level, the second

valley K0 also contributes, but Dn for the same energy corresponds to another

value of n (n! n 1) and, thus, will be different. As a result, we have the

picture of the energy levels shown schematically in Fig. 5.12. An almost zero-

energy Landau band (originating from the zero-energy Landau level for an

infinite system) corresponds, for a given edge, to the states from a single

valley; the states from the second valley are associated with another edge.

For the case of armchair edges the boundary conditions (5.116) lead to the

Schrödinger equation (5.119) and (5.120), but with the potential

V xð Þ ¼ 1

2
xj j x0ð Þ2 1

2
sgn x ð5:126Þ

V(x)

x

Fig. 5.11. The effective potential (5.121) (for the case of the minus sign).
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(see Fig. 5.13). Indeed, one can define formally

c 01 xð Þ � c1 xð Þ;
c 02 xð Þ � c2 xð Þ;

ð5:127Þ

so that Eq. (5.116) is nothing other than the condition of continuity of the

wave function c1 and its derivative dc1/dx (which is related to c2 by the Dirac

equation) at x¼ 0. The qualitative dependence En(x0/l) remains the same as

that shown in Fig. 5.12. A more detailed analysis of the problem in the

semiclassical approximation was performed by Delplace & Montambaux

(2010).

To calculate the Hall conductivity one needs just to count the occupied edge

states for a given Fermi energy, with each state contributing e2/h per spin.

One can see immediately from Fig. 5.12 that the lowest-energy Landau band

always produces one edge electron (forE> 0) or hole (E< 0) state and all other

bands produce two such states. This gives immediately Eq. (2.167) for sxy, with

gv¼ 2 and gs¼ 1 (Abanin, Lee & Levitov, 2006).

V(x)

x

Fig. 5.13. The effective potential (5.126).

Ev

x0 /lB

Fig. 5.12. A sketch of the energy spectrum for magnetic edge states.

5.8 Edge states in magnetic fields 133

              

       



6

Point defects

6.1 Scattering theory for Dirac electrons

Here we discuss quantum relativistic effects in the electron scattering by a

radially symmetric potential V(r). This will give us a feeling for the peculiar

properties of charge carriers in imperfect graphene, in comparison with the

conventional two-dimensional electron gas with impurities (Ando, Fowler &

Stern, 1982). Further, we will consider a more realistic model of defects in a

honeycomb lattice, beyond the Dirac approximation. In this section we

follow the papers by Katsnelson & Novoselov (2007), Hentschel & Guinea

(2007), Guinea (2008) and Novikov (2007). It is instructive to compare the

scattering theory developed in those works with the two-dimensional scattering

theory for the Schrödinger equation (Adhikari, 1986).

Let us start with the equation

ihv~̂srþ V rð Þ
� �

c1

c2

� �

¼ E
c1

c2

� �

; ð6:1Þ

where the potential V(r) is supposed to be isotropic, that is, dependent only

on the modulus r ¼ x2 þ y2
p

. We have to pass to the radial coordinates (see

Eqs. (5.16) (5.19)). Then Eq. (6.1) is transformed to the couple of ordinary

differential equations

dgl rð Þ
dr

l

r
gl rð Þ

i

hv
E V rð Þ½ � fl rð Þ ¼ 0;

dfl rð Þ
dr
þ lþ 1

r
fl rð Þ

i

hv
E V rð Þ½ �gl rð Þ ¼ 0;

ð6:2Þ

where l¼ 0, �1, �2, . . . is the angular-momentum quantum number and we

try the solution in the following form (cf. Eq. (5.19):

c1 ~rð Þ ¼ gl rð Þexp iljð Þ;
c2 ~rð Þ ¼ fl rð Þexp i lþ 1ð Þjð Þ:

ð6:3Þ
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To be specific, we will consider further the case of electrons with E ¼ hvk > 0.

In two dimensions, the incident electron plane wave has the expansion

exp i~k~r
� �

¼ exp ikr cosjð Þ ¼
X

1

l 1
ilJl krð Þexp iljð Þ; ð6:4Þ

where Jl(z) are the Bessel functions (Whittaker & Watson, 1927). At large

values of the argument (kr� 1), they have asymptotics

Jl krð Þ ffi
2

pkr

r

cos kr
lp

2

p

4

� �

: ð6:5Þ

The radial Dirac equation (6.2) for free space (V(r)¼ 0) has, for a given l, two

independent solutions, which are proportional to the Bessel and Neumann

functions, Jl(kr) and Yl(kr), the latter having the asymptotics (kr� 1)

Yl krð Þ ffi
2

pkr

r

sin kr
lp

2

p

4

� �

; ð6:6Þ

but the functions Yl(kr) are divergent at r ! 0. Instead, one can use Hankel

functions

H
1;2ð Þ
l krð Þ ¼ Jl krð Þ � iYl krð Þ ð6:7Þ

with the asymptotics, at kr� 1,

H
1;2ð Þ
l krð Þ ffi 2

pkr

r

exp �i kr
lp

2

p

4

� �� �

: ð6:8Þ

Thus, the function H
1ð Þ
l describes the scattering wave and H

2ð Þ
l describes the

wave falling at the centre.

If we have a potential of finite radius R (V(r>R)¼ 0), the solution of

Eqs. (6.2) at r>R can be represented in the form

gl rð Þ ¼ A Jl krð Þ þ tlH
1ð Þ
l krð Þ

h i

;

fl rð Þ ¼ iA Jlþ1 krð Þ þ tlH
1ð Þ
lþ1 krð Þ

h i

;
ð6:9Þ

where the terms proportional to Bessel (Hankel) functions describe incident

(scattering) waves. The complex factors tl in Eq. (6.9) are scattering

amplitudes.

One can represent them in a more conventional way, via scattering phases

dl (Newton, 1966; Adhikari, 1986). The latter are determined via the asymp-

totics of radial solutions at kr� 1,
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gl krð Þ /
1

kr
p cos kr

lp

2

p

4
þ dl

� �

: ð6:10Þ

Taking into account Eqs. (6.5) (6.8), Eq. (6.10) can be represented as

gl rð Þ / cos dl Jl krð Þ sin dl Yl krð Þ

¼ exp idlð Þ Jl krð Þ þ i sin dl exp idlð ÞH 1ð Þ
l krð Þ

h i

: ð6:11Þ

On comparing Eqs. (6.9) and (6.11) one finds

tl kð Þ ¼ i sin dl kð Þexp idl kð Þ½ � ¼ exp 2idl kð Þ½ � 1

2
: ð6:12Þ

It follows from Eq. (6.12) that

tl kð Þj j � 1; ð6:13Þ

which means, as we will see below, that the scattering current cannot be larger

than the incident one.

Let us calculate now the scattering cross-section. For the incident wave

propagating along the x-axis we have

C
0ð Þ ¼ 1

2
p 1

1

� �

exp ikxð Þ; ð6:14Þ

where the numerical factor provides normalization of the incident current:

j 0ð Þx ¼ C
0ð Þ

h iþ
sxC

0ð Þ ¼ 1: ð6:15Þ

Thus, one can chooseA ¼ 1= 2
p

in Eq. (6.9). Taking into account Eqs. (6.9) and

(6.8), one finds for the asymptotics of the scattering waves at large distances

Csc �
1

pkr
p exp ikr

ip

4

� �

X

1

l 1
tl

exp i lþ 1ð Þj½ �
exp iljð Þ

� �

: ð6:16Þ

The current operator in the direction ~n ¼~r=r is

ĵn ¼ ~n~̂s ¼ 0 e ij

eij 0

� �

; ð6:17Þ

which gives us for the scattering current

j scð Þ ¼ C
þ
sc ĵnCsc ¼

2

pkr
F jð Þj j2; ð6:18Þ
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where

F jð Þ ¼
X

1

l 1
tl exp iljð Þ: ð6:19Þ

Equation (6.18) gives for the differential cross-section

ds

dj
¼ 2

pk
F jð Þj j2: ð6:20Þ

The Dirac equation (6.2) for the massless case has an important sym-

metry with respect to the replacement f $ g, l $ l 1, which leads to

the result

tl kð Þ ¼ t l 1 kð Þ: ð6:21Þ

Taking into account Eq. (6.21), the equation (6.20) can be rewritten in the

final form (Katsnelson & Novoselov, 2007)

ds

dj
¼ 8

pk

X

1

l 0

tl cos lþ 1

2

� �

j

� �

�

�

�

�

�

�

�

�

�

�

2

: ð6:22Þ

It follows immediately from Eq. (6.22) that ds/dj¼ 0 at j¼ p, that is,

backscattering is absent. This is in agreement with the general considerations

of Section 4.2.

If we have a small concentration of point defects, nimp, then, according to

the standard semiclassical Boltzmann theory (Ziman, 2001; Shon & Ando,

1998; see also below, Chapter 11), their contribution to the resistivity is

r ¼ 2

e2v2N EFð Þ
1

t kFð Þ
; ð6:23Þ

where t(kF) is the mean-free-path time and

1

t kFð Þ
¼ nimpvstr; ð6:24Þ

where

str ¼
ð

2p

0

dj
ds

dj
1 cosjð Þ ð6:25Þ

is the transport cross-section. The applicability of the semiclassical

Boltzmann theory to quantum relativistic particles in graphene is not clear,
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a priori. This issue will be considered in detail in Chapter 11, and the answer

will be that, yes, we can use this theory except in the very close vicinity of

the neutrality point, where the minimal conductivity is a purely quantum

phenomenon (see Chapter 3). On substituting Eq. (6.20) into Eq. (6.25)

one finds

str ¼
4

k

X

1

l 0

sin2 dl dlþ1ð Þ: ð6:26Þ

Note that Eq. (6.23) for the case of graphene coincides with Eq. (4.65), where

l¼ vt(kF) is the mean free path.

6.2 Scattering by a region of constant potential

Let us apply a general theory from the previous section to the simplest case of

a rectangular potential well (or hump),

V rð Þ ¼ V0; r < R;
0; r > R:

�

ð6:27Þ

Then, the asymptotic expression (6.9) gives us an exact solution for r>R.

At r<R, k should be replaced by

q ¼ E V0

hv
ð6:28Þ

and only Bessel functions Jl(qr) are allowed (otherwise, the solution will not

be normalizable, due to divergence Yl(z) � z l at z! 0):

gl rð Þ ¼ BJl qrð Þ;
fl rð Þ ¼ iBJlþ1 qrð Þ

ð6:29Þ

at r<R. One needs to add the conditions of continuity of the functions gl(r)

and fl(r) at r¼R. The result is (Katsnelson & Novoselov, 2007; Hentschel &

Guinea, 2007)

tl kð Þ ¼
Jl qRð ÞJlþ1 kRð Þ Jl kRð ÞJlþ1 qRð Þ

H
1ð Þ
l kRð ÞJlþ1 qRð Þ Jl qRð ÞH 1ð Þ

lþ1 kRð Þ
: ð6:30Þ

Let us consider first the case of a short-range potential,

kR� 1; ð6:31Þ
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then q ¼ V0=ðhvÞ can be considered an energy-independent quantity.

At z! 0,

Jl zð Þ �
1

l !

z

2

� �l

;

H
1ð Þ
l zð Þ � i

p

2

z

� �l

l 1ð Þ! l 6¼ 0ð Þ;

H
1ð Þ
0 zð Þ � 2i

p
ln z:

ð6:32Þ

On substituting Eq. (6.32) into Eq. (6.30), one finds

tl kð Þ �
pi

l!ð Þ2
Jlþ1 qRð Þ
Jl qRð Þ

kR

2

� �2lþ1
ð6:33Þ

and, thus, the s-scattering (l¼ 0) dominates,

t0 kð Þ � d0 kð Þ � kR: ð6:34Þ

According to Eq. (6.26),

str � k ð6:35Þ

and the contribution to the resistivity (6.23), (4.65) for the short-range

scatterers, can be estimated as

r ffi h

e2
nimpR

2: ð6:36Þ

We will see later (see the detailed analysis in Chapter 11) that this contribu-

tion is negligible.

The results (6.34) and (6.35) are quite clear, keeping in mind an analogy

with optics (Born & Wolf, 1980). The dispersion relation for massless Dirac

fermions is the same as for photons, but for the latter case we know that

obstacles with geometrical sizes much smaller than the wavelength are very

inefficient scatterers.

There is a special case, however, if

J0 qRð Þ ¼ 0: ð6:37Þ

Then, the expression (6.33) does not work at l¼ 0, and higher-order terms

should be taken into account. The result is

t0 kð Þ ffi pi

2

1

ln kRð Þ ð6:38Þ
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and

str ¼
p2

k ln2 kRð Þ
: ð6:39Þ

Therefore, instead of (6.36) we have a much larger contribution to the resisti-

vity (Ostrovsky, Gornyi & Mirlin, 2006; Katsnelson & Novoselov, 2007):

r ffi h

e2
nimp

n

1

ln2 kFRð Þ
; ð6:40Þ

where n ¼ k2
F=p is the charge-carrier concentration.

The condition (6.37) corresponds to the case of resonance, for which a

virtual bound state in the well lies close to the neutrality point. Later in this

chapter we will consider more realistic models of such resonant scatterers,

namely vacancies and adatoms. It is interesting to see, however, that the effect

exists already in the Dirac approximation.

If we were to repeat the same calculations for a nonrelativistic electron gas

(Adhikari, 1986), then, instead of continuity of two components of the spinor

wave function at r¼R, we would have conditions of continuity of the

single-component wave function and its derivative. The result is

tl kð Þ ¼

k

q

� �

Jl qRð ÞJlþ1 kRð Þ Jl kRð ÞJlþ1 qRð Þ

H
1ð Þ
l kRð ÞJlþ1 qRð Þ k

q

� �

Jl qRð ÞH 1ð Þ
lþ1 kRð Þ

; ð6:41Þ

where k and q are, again, wave vectors outside and inside the potential region.

In this case t0(k) � 1/ln(kR) (cf. Eq. (6.38)) for general values of the para-

meters, and the contribution to the resistivity takes the form (6.40). One can

say that for the two-dimensional nonrelativistic electron gas any potential

scattering should be considered resonant. This agrees with the fact that the

perturbation theory does not work in such a situation and an arbitrarily weak

potential leads to the formation of a bound state (Landau & Lifshitz, 1977).

The opposite limit

kR� 1 ð6:42Þ
is relevant for the problem of electron scattering by clusters of charge impu-

rities (Katsnelson, Guinea & Geim, 2009; see also Chapter 11 of this book).

On substituting the asymptotics (6.5) and (6.8) into Eq. (6.30) one finds

tl kð Þ �
1

2
exp

2iV0R

hv

� �

1

� �

: ð6:43Þ
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The summation in Eq. (6.19) should be taken up to jlj � lmax� kR, thus

ds

dj
¼ 2

pk
sin2

V0R

hv

� �

X

lmax

l¼ lmax

eilj

�

�

�

�

�

�

�

�

�

�

2

¼ 2

pk
sin2

V0R

hv

� � sin2
2lmax þ 1ð Þj

2

� �

sin2
j

2

� � : ð6:44Þ

The expression (6.44) has sharp maxima at the angles

j ¼ p
2nþ 1

2lmax þ 1
; n ¼ 0;�1; . . . ;

which can be related to periodic classical trajectories of electrons within the

potential well (for more details, see Katsnelson, Guinea & Geim, 2009). On

substituting Eq. (6.44) into Eq. (6.25) one finds

str ffi
4

k
sin2

V0R

hv

� �

: ð6:45Þ

Interestingly, the cross-section (6.45) is small in comparison with the geome-

trical size of the potential region R. Indeed, the region is transparent, due to

Klein tunnelling. The corresponding contribution to the resistivity is

r ffi h

e2
nimp

n
sin2

V0R

hv

� �

: ð6:46Þ

Thus, long-range potential scattering leads to a contribution to the resistivity

proportional to 1/n.

6.3 Scattering theory for bilayer graphene

in the parabolic-band approximation

We saw in the previous section that the scattering of massless Dirac fermions

in graphene (chiral states, a linear dispersion relation) is essentially different

from that of nonrelativistic electrons (nonchiral states, a parabolic dispersion

relation) in a two-dimensional electron gas. To understand better the role of

chirality and of dispersion relations, it is instructive to consider the case of

chiral states with a parabolic dispersion relation, that is, the case of bilayer

graphene in the parabolic-band approximation (1.46). The corresponding

scattering theory was developed by Katsnelson (2007c).

To solve the Schrödinger equation for the Hamiltonian (1.46) with the

addition of a radially symmetric potential V(r), one has to use, instead of
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Eq. (6.3), the angular dependences of the two components of the spinor

wave function,

c1 ~rð Þ ¼ gl rð Þexp iljð Þ;
c2 ~rð Þ ¼ fl rð Þexp i lþ 2ð Þjð Þ;

ð6:47Þ

where l¼ 0, �1, . . . The radial components satisfy the equations

d

dr

lþ 1

r

� �

d

dr

l

r

� �

gl ¼ k2
2m
V

h2

� �

fl;

d

dr
þ lþ 1

r

� �

d

dr
þ lþ 2

r

� �

fl ¼ k2
2m
V

h2

� �

gl;

ð6:48Þ

where, to be specific, we consider the case of electrons with

E ¼ h2k2=ð2m
Þ > 0:

The problem of scattering for this case is essentially different both from the

Dirac theory and from the Schrödinger theory since evanescent waves are

unavoidably involved (cf. the discussion of Klein tunnelling for the case of

bilayer graphene, Section 4.7). This means that, beyond the radius of action

of the potential, Bessel functions of imaginary arguments have to be added

to Eq. (6.9). More specifically, we mean the Macdonald function Kl(kr)

(Whittaker & Watson, 1927) with the asymptotics

Kl krð Þ �
p

2kr

r

exp krð Þ ð6:49Þ

at kr� 1; the Bessel functions Il (kr) grow exponentially at large r and cannot

be used, due to the normalization condition for the wave function. Thus, one

should try for the solution at large distances

gl rð Þ ¼ A Jl krð Þ þ tlH
1ð Þ
l krð Þ þ clKl krð Þ

h i

;

fl rð Þ ¼ A Jlþ2 krð Þ þ tlH
1ð Þ
lþ2 krð Þ þ clKlþ2 krð Þ

h i

:
ð6:50Þ

One can check straightforwardly that the functions (6.50) satisfy the equa-

tions (6.48) at V(r)¼ 0 for any A, tl and cl.

The terms proportional to Jl (kr) are related to the incidentwave (seeEq. (6.4)),

those proportional toH
1ð Þ
l krð Þ to the scattering waves and those proportional to

Kl (kr) to the evanescent waves. The coexistence of scattering and evanescent

waves at the same energy makes the case of bilayer graphene really peculiar.

The normal component of the current operator

ĵn ¼ ~n
dĤ

h d~k
; ð6:51Þ
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where ~n ¼~r=r and Ĥ is the Hamiltonian (1.46), has the form (cf. Eq. (6.17))

ĵn ¼
hk

m

0 exp 2ijð Þ

exp 2ijð Þ 0

� �

: ð6:52Þ

By calculating, further, the scattering cross-section as in the previous section,

we find formally the same expression (6.19) and (6.20) as for the case of

single-layer graphene. However, the symmetry properties of Eqs. (6.48) are

different. Namely, they are invariant under the replacement f$ g, l$ l 2.

As a result, instead of Eq. (6.21) we have

tl kð Þ ¼ t l 2 kð Þ: ð6:53Þ

Substituting Eq. (6.53) into Eq. (6.19), we rewrite Eq. (6.20) as

ds

dj
¼ 2

pk
t 1 þ 2

X

1

l 0

tl cos lþ 1ð Þj½ �
�

�

�

�

�

�

�

�

�

�

2

; ð6:54Þ

which gives us a general solution of the scattering problem.

To find the scattering amplitudes tl one needs to specify V(r). For simpli-

city, we will use the expression (6.27) (a region of constant potential). Then,

for the solution of Eqs. (6.48) at r<R that is regular as r! 0 one can try

gl rð Þ ¼ alJl qrð Þ þ blIl qrð Þ;
fl rð Þ ¼ s alJlþ2 qrð Þ þ blIlþ2 qrð Þ½ �;

ð6:55Þ

where

s ¼ sgnðE V0Þ;

q ¼ 2m
 E V0j j
h2

s

:
ð6:56Þ

Equations (6.48) are now satisfied identically, and the coefficients al, bl, tl and cl
should be found from continuity of gl (r), fl (r), dgl (r)/dr and dfl rð Þ=dr at r¼R.

Further, we will consider only the case of a short-range potential, kR� 1.

For the case l¼ 1, taking into account the identities K1(z)¼K 1 (z), I1(z)¼
I1 ( z), J1 (z)¼ J 1 (z) and H

1ð Þ
1 zð Þ ¼ H

1ð Þ
1 zð Þ one can prove immediately

that c 1¼ 0 and

t 1 / kRð Þ2: ð6:57Þ

Also, taking into account the asymptotics of the Macdonald and Hankel

functions for l> 2, z! 0 (we need here next-order terms, in comparison with

Eq. (6.32)),
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Kl zð Þ �
1

2

2

z

� �l

l 1ð Þ! 1

2

2

z

� �l 2

l 2ð Þ!;

H
1ð Þ
l zð Þ � i

p

2

z

� �l

l 1ð Þ! i

p

2

z

� �l 2

l 2ð Þ!;

ð6:58Þ

one can prove that for l� 1 and kR! 0 both tl and cl are of the order of (ka)
2l

or smaller and thus only the s-channel (l¼ 0) contributes to the scattering

cross-section, so that Eq. (6.54) can be rewritten as

ds

dj
¼ 8

pk
t0 kð Þj j2 cos2j: ð6:59Þ

For single-layer graphene, ds/dj � cos2(j/2) (see Eq. (6.22)) and back-

scattering is forbidden. For the case of bilayer graphene there is a strong

suppression of the scattering at j� p/2. This reflects a difference of the chiral

properties of electron states in these two situations.

For the case l¼ 0 the wave functions at r>R (but for kr� 1), Eqs. (6.50),

have the forms

g0 rð Þ ¼ A 1þ t0 þ t0 ln
kr

2

� �

þ g

� �

þO krð Þ2 ln krð Þ
h i

;

f0 rð Þ ¼ A
2i

p
t0 t0

2

krð Þ2
1

2

 !" #

þO krð Þ2 ln krð Þ
h i

;

ð6:60Þ

where g� 0.577. . . is the Euler constant,

t0 ¼
2it0

p
c0: ð6:61Þ

It follows from the continuity of df0(r)/dr at r¼R that

t0 ¼
k2R3

4A

df0 rð Þ
dR

� k2 ð6:62Þ

and, thus,

dg0

dr

�

�

�

�

r R

� k2:

In the limit k! 0 one has the condition

dg0

dr

�

�

�

�

r R

¼ 0; ð6:63Þ
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which gives us a ratio of b0/a0. As a result, for r<R

g0 rð Þ ¼ a0 J0 qrð Þ I0 qrð Þ J
0
0 qRð Þ
I 00 qRð Þ

� �

;

f0 rð Þ ¼ sa0 J2 qrð Þ I2 qrð Þ J
0
0 qRð Þ
I 00 qRð Þ

� �

;

ð6:64Þ

where prime means d/dR. Thus, we have two equations for the constant

a0 and A,

g0 Rð Þ ¼ A 1þ t0ð Þ;

f0 Rð Þ þ R

2

df0 Rð Þ
dR

¼ 2iA

p
t0;

ð6:65Þ

which gives us the final expression for t0.

It is clear that t0 does not depend on k in the limit kR! 0. It takes the value

with the maximum possible modulus, t0¼ 1 (the unitary limit), when

d

dR

J0 qRð Þ
I0 qRð Þ ¼ 0: ð6:66Þ

This behaviour is dramatically different both from that of massless Dirac

fermions and from that of conventional nonrelativistic electrons, for which

t0(k)! 0 at k! 0 (either linearly or �1/jln kj).
As a result, for the case of short-range scattering in bilayer graphene (in the

parabolic-band approximation)

str �
1

k
ð6:67Þ

and the corresponding contribution to the resistivity is

r � h

e2
nimp

n
: ð6:68Þ

Within the perturbation theory, this concentration dependence was obtained

by Koshino & Ando (2006).

We will postpone further discussion of these results until Chapter 11, where

we will discuss electronic transport in graphene; here we restrict ourselves to

the quantum-mechanical problem.

6.4 General theory of defects in a honeycomb lattice

In general, the continuummedium approximation used above is not sufficient

for discussing short-range scattering centres in graphene since they induce

intervalley transitions (Shon & Ando, 1998). To study these effects, we pass
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here to consideration of defects in a honeycomb lattice (Peres, Guinea &

Castro Neto, 2006; Wehling et al., 2007; Wehling, Katsnelson & Lichtenstein,

2009a; Basko, 2008). We will use the T-matrix formalism which has already

been mentioned in Section 4.2 (see Eqs. (4.33) and (4.34)), but here we will

present it in a more systematic way (see Lifshitz, Gredeskul & Pastur, 1988;

Vonsovsky & Katsnelson, 1989).

Let us consider a general, single-particle Hamiltonian

Ĥ ¼ Ĥ0 þ V̂ ð6:69Þ

defined on a crystal lattice, Ĥ0 being the Hamiltonian of the ideal lattice and

V̂ the perturbation created by defects. The local density of states at site i is

determined by the expression

Ni Eð Þ ¼ ih jd E Ĥ
� �

ij i; ð6:70Þ

which can also be represented as

Ni Eð Þ ¼
1

p
Im Ĝii Eð Þ; ð6:71Þ

where

Ĝ Eð Þ ¼ lim
d!þ0

1

E Ĥþ id
ð6:72Þ

is the Green function (resolvent) of the operator Ĥ. It follows immediately

from Eq. (6.69) that

Ĝ 1 ¼ Ĝ 1
0 V̂; ð6:73Þ

where Ĝ0 is the Green function of the unperturbed problem, Eq. (4.34). By

multiplying Eq. (6.73) by operators Ĝ from the right side and Ĝ0 from the left

side we derive the Dyson equation

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂Ĝ Eð Þ: ð6:74Þ

Its formal solution can be written as

Ĝ Eð Þ ¼ Ĝ0 Eð Þ 1 V̂Ĝ0 Eð Þ
	 
 1

; ð6:75Þ

which is a compact notation for the infinite series

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂Ĝ0 Eð Þ þ Ĝ0 Eð ÞV̂Ĝ0 Eð ÞV̂Ĝ0 Eð Þ þ � � � ð6:76Þ
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Alternatively, the series (6.76) can be written as

Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞT̂ Eð ÞĜ0 Eð Þ; ð6:77Þ

where T̂ is the T-matrix satisfying Eq. (4.33). Its formal solution can be

represented as

T̂ Eð Þ ¼ 1 V̂Ĝ0 Eð Þ
	 
 1

V̂: ð6:78Þ

The change of the spectral density can be expressed in terms of the T-matrix.

The total density of states

N Eð Þ ¼ Tr d E Ĥ
� �

¼ 1

p
Tr Im Ĝ Eð Þ ð6:79Þ

can be written, due to Eqs. (6.72) and (6.75), as

N Eð Þ ¼ 1

p

@

@E
Tr Im ln Ĝ Eð Þ ¼ 1

p

@

@E
Tr Im ln Ĝ0 Eð Þ � ln 1� V̂Ĝ0 Eð Þ

� �	 


ð6:80Þ

since

Ĝ Eð Þ ¼ @

@E
ln Ĝ 1 Eð Þ: ð6:81Þ

At the same time, due to Eq. (6.78),

ln T̂ Eð Þ ¼ ln 1 V̂Ĝ0 Eð Þ
	 


þ ln V̂; ð6:82Þ

the last term being energy-independent. As a result, the change of the density

of states due to the perturbation V̂ can be presented as

DN Eð Þ ¼ N Eð Þ N0 Eð Þ ¼ 1

p

@

@E
ImTr ln T̂ Eð Þ: ð6:83Þ

Finally, using the operator identity

Tr ln Â ¼ ln det Â; ð6:84Þ

one can represent Eq. (6.83) in the form

DN Eð Þ ¼ 1

p
Im

@

@E
ln det 1 Ĝ0 Eð ÞV̂

	 


; ð6:85Þ

which is more convenient for real calculations.

The contribution of point defects to the resistivity can be also expressed in

terms of the T-matrix, see Chapter 11.

If the perturbation V̂ is localized on one site i¼ 0 only,
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Vij ¼ Vdi0dj0; ð6:86Þ

then one can see, from Eq. (6.78), that the T̂-matrix is also localized on the

same site:

Tij Eð Þ ¼ T00 Eð Þdi 0dj 0; ð6:87Þ

where

T00 Eð Þ ¼ V

1 VG
0ð Þ
00 Eð Þ

ð6:88Þ

and G
0ð Þ
00 Eð Þ is the matrix element of Green’s function for the ideal crystal

lattice at site 0. For the lattice without basis,

G
0ð Þ
00 Eð Þ ¼ lim

d!þ0

X

~k

1

E t ~k
� �

þ id
: ð6:89Þ

However, for the case of a honeycomb lattice theHamiltonian Ĥ0 is a 2	 2matrix,

which has, in the nearest-neighbour approximation, the form (1.14). By inverting

the matrix E Ĥ0 one finds the Green function Ĝ0 in the k representation:

Ĝ0 E; ~k
� �

¼ lim
d!þ0

1

Eþ idð Þ2 t ~k
� ��

�

�

�

�

�

2

E t ~k
� �

t
 ~k
� �

E

0

@

1

A; ð6:90Þ

where t ~k
� �

¼ tS ~k
� �

. Thus, instead of Eq. (6.89) we have, for the on-site

Green function,

G
0ð Þ
00 Eð Þ ¼ lim

d!þ0

X

~k

E

Eþ idð Þ2 t ~k
� ��

�

�

�

�

�

2

¼ 1

2
lim
d!þ0

X

~k

1

Eþ id t ~k
� ��

�

�

�

�

�

þ 1

Eþ idþ t ~k
� ��

�

�

�

�

�

0

B

@

1

C

A
;

ð6:91Þ

for which it does not matter whether the site 0 belongs to sublattice A or

sublattice B. At jEj� jtj

N0 Eð Þ ¼ 1

p
ImG

0ð Þ
00 Eð Þ ¼ 1

p

Ej j
h2v2

ð6:92Þ

(cf. Eq. (1.72); our quantity is smaller by a factor of 2 since here we do not

take into account the spin degeneracy). To find the real part of G
0ð Þ
00 one can

use Kramers Kronig relations:
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ReG
0ð Þ
00 Eð Þ ¼ P

ð

1

1

dE 0
N0 E 0ð Þ
E E 0

; ð6:93Þ

where P is the symbol for the principal value. We can also just guess the

answer, keeping in mind that G
0ð Þ
00 Eð Þ is a regular function of energy in the

upper complex half-plane.

Notice that jEj ¼E sgn E¼E [1 2y( E)], where y(x> 0)¼ 1, y(x< 0)¼ 0

and

y Eð Þ ¼ 1

p
Im ln Eþ idð Þ:

This means that

Ej j ¼ E
2

p
E Im ln Eþ idð Þ ð6:94Þ

and, thus, the term jEj in ð1=pÞImG
0ð Þ
00 Eð Þ corresponds to 2E Re ln(Eþid)

¼ 2E ln jE j in Re G
0ð Þ
00 Eð Þ. Taking into account also that

G
0ð Þ
00 E ¼ 0ð Þ ¼ 0; ð6:95Þ

by symmetry one finds

ReG
0ð Þ
00 Eð Þ ffi 2

p

E ln
Ej j
D

� �

h2v2
; ð6:96Þ

where we introduce within the logarithm a factor D of the order of the

bandwidth. For the accurate calculation of this factor, see Basko (2008).

A general theory of scattering by short-range defects in graphene, including

group-theory analysis, can also be found in that paper.

The contributions of various types of defects to the transport properties will be

considered in detail inChapter 11.Herewewill give just some simple estimations,

in order to establish relations between this section and the previous ones.

For the case of a weak enough potential V, the scattering rate (6.24) can be

estimated, according to the Fermi golden rule, as

1

t kFð Þ
¼ 2p

h
nimp Vj j2N0 EFð Þ: ð6:97Þ

For the case of a small concentration of defects but strong scattering, one

can prove rigorously (Luttinger & Kohn, 1958) that the potential V should be

replaced by the T-matrix:
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1

t kFð Þ
¼ 2p

h
nimp T00 EFð Þj j2N0 EFð Þ ð6:98Þ

(for the case of graphene, see Robinson et al., 2008; Wehling et al., 2010a).

6.5 The case of vacancies

As a specific application of the general theory described above, consi-

der first the case of vacancies (Peres, Guinea & Castro Neto, 2006).

Vacancies are not naturally present in graphene, due to their very high

formation energy of about 7.5 eV, see Kotakoski, Krasheninnikov &

Nordlund (2006). However, they can be created by ion bombardment

(Chen et al., 2009).

The simplest way to simulate the vacancy is just to putV¼1 in the expression

(6.88), thus making the site i¼ 0 unavailable for electrons. In this case,

T00 Eð Þ ¼ 1

G00
0ð Þ Eð Þ

: ð6:99Þ

On substituting Eq. (6.99) into Eq. (6.77) one finds that G00(E)¼ 0, as it

should be.

For small energies jEj�D one finds from Eqs. (6.96) and (6.99)

T00 Eð Þ ¼ ph2v2

E

1

2 ln
Ej j
D

� �

ip sgnE

: ð6:100Þ

The change of the density of states, according to Eq. (6.83), is

DN Eð Þ ¼ 1

p

@

@E
Im lnT00 Eð Þ

¼ 1

p

@

@E
Im ln 2 ln

Ej j
D

� �

ip sgnE

� �

� 2

Ej jln2 D

Ej j

� � :
ð6:101Þ

This contribution is negative since the vacancy changes the total number of

sites in the system by one, thus

ð

1

1

dEDN Eð Þ ¼ 1: ð6:102Þ

It is singular at E! 0.
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By substituting Eq. (6.100) into Eqs. (6.98) and (6.23) one can estimate the

vacancy contribution to the momentum relaxation rate and, thus, to the

resistivity:

r � h

e2
nimp

n

1

ln2 kFað Þ
; ð6:103Þ

coinciding with Eq. (6.40). Thus, the vacancy is a resonant scatterer

contributing essentially to the resistivity (Hentschel & Guinea, 2007; Chen

et al., 2009).

Qualitatively, this result can be obtained also within the continuum

model. Let us consider the Dirac equation for the empty space with the

radial wave functions (6.9). Let us assume that the disc r<R is just cut from

the sample. To be specific, let us assume boundary conditions of zigzag type,

cA¼ 0, that is,

gl Rð Þ ¼ 0 ð6:104Þ

(the case cB¼ 0 can be derived just by the replacement l! l 1, as was

explained in Section 6.1). Taking into account the behaviour of Bessel and

Hankel functions at kr� 1 (Eq. 6.32), one finds immediately that

t0 kð Þ ¼ J0 kRð Þ
H0

1ð Þ kRð Þ
� pi

2 ln kRð Þ ; ð6:105Þ

coinciding with Eq. (6.38). As we have seen in Section 6.2 this gives the

estimation (6.103) for the resistivity (Hentschel & Guinea, 2007).

Consider now the asymptotics of the perturbed density of states,

DNi Eð Þ ¼
1

p
Im G

0ð Þ
i0 Eð ÞT00 Eð ÞG 0ð Þ

0i Eð Þ
h i

ð6:106Þ

(see Eq. (6.77)) at Ri!1. The asymptotics of the Green function

G
0ð Þ
i0 Eð Þ ¼

X

~k

exp i~k~Ri

� �

G0 E; ~k
� �

; ð6:107Þ

where G0 E; ~k
� �

is defined by Eq. (6.90), is determined by the region of
~k close to one of the conical points, K or K0. For a generic perturbation

V the result is (Bena & Kivelson, 2005; Lin, 2005, 2006; Wehling

et al., 2007)

DNi Eð Þ �
1

Ri

ð6:108Þ
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at Ej jRi=ðhvÞ � 1. For the case of a vacancy (V¼1) we have, instead of

Eq. (6.108),

DNi Eð Þ �
1

R2
i

ð6:109Þ

(Pereira et al., 2006).

Finally, consider the case of a finite concentration of vacancies. The

singularity of the scattering amplitude, Eqs. (6.100) and (6.105), results in the

formation of mid-gap states, or vacancy bands (Pereira et al., 2006; Yuan,

De Raedt & Katsnelson, 2010a, 2010b). Figure 6.1 shows the total density of

states (in the small-energy region) obtained numerically for a large (about

107 nodes) piece of honeycomb lattice with periodic boundary conditions, with

different concentrations of randomly distributed vacancies (Yuan, De Raedt &

Katsnelson, 2010a). The vacancy-induced states form a peak at E¼ 0. In the

continuum-medium model (see Eq. (6.104)) these states are associated with the

edge states at the boundary of the void (Pereira et al., 2006). Note, however, that

the latter model is valid only qualitatively since the atomically sharp disorder

induces intervalley processes, which should be taken into account (Basko, 2008).

6.6 Adsorbates on graphene

Adsorbed atoms and molecules are probably the most important examples of

point defects in the physics of graphene. Owing to the outstanding strength

of the carbon honeycomb lattice it is very difficult to introduce any defects into

the lattice itself. At the same time, some contamination of graphene is unavoid-

able. A systematic study of adsorbates on graphene was started by Schedin et al.

(2007), who discovered an extreme sensitivity of the electric properties of

graphene to gaseous impurities; even the adsorption of a single molecule can

be detected. The case of NO2 was studied in detail, both theoretically and

experimentally, by Wehling et al. (2008b). Optimized structures and electron

densities of states for the NO2 monomer and dimer are shown in Fig. 6.2. One

can see that for the latter case (N2O4) there is a peak in the density of states that is

reminiscent of the vacancy-induced mid-gap states. Chemical functionalization

of graphene, leading, in particular, to the derivation of new two-dimensional

crystals, such as graphane, CH (Elias et al., 2009), and fluorographene, CF

(Nair et al., 2010), starts with chemisorption of the corresponding adatoms

or admolecules (for a review, see Boukhvalov & Katsnelson, 2009a). Last but

not least, scattering by adatoms and admolecules seems to be one of the most

important factors limiting electron mobility in graphene (Wehling et al.,

2010a; Ni et al., 2010); for more details, see Chapter 11.
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The simplest single-electron model describing adsorbates is the hybridization

model with the Hamiltonian (Robinson et al., 2008; Wehling et al., 2010a)

Ĥ ¼
X

ij

tij ĉ
þ
i ĉj þ

X

ij

gij ĉþi d̂j þ d̂þj ĉi
� �

þ Ed

X

i

d̂þi d̂i; ð6:110Þ
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Fig. 6.1. The density of states of graphene with a small concentration of
vacancies (a) or hydrogen atoms (that is, adatoms with the parameters
(6.114)) (b). Solid lines, pure graphene; dashed lines, 0.1% of defects; dotted
lines, 1% of defects. (Reproduced with permission from Yuan, De Raedt &
Katsnelson, 2010a.)
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where the operators ĉi and d̂i annihilate electrons on the ith carbon atom and ith

atom of adsorbate, respectively, tij are the hopping parameters for the carbon

honeycomb lattice, Ed is the electron energy for the adsorbate atoms (which are

assumed to be identical) and gij are hybridization parameters between the ith

carbon atom and jth adsorbed atom. The d electron subsystem can be rigorously

excludedbyprojection to c subspace only; the effectiveHamiltonian for c electrons

has the form (6.69), where Ĥ0 is the first term on the right-hand side of Eq. (6.110)

(the bandHamiltonian for graphene) and V̂ is the energy-dependent perturbation,

Vij ¼

P

l

gil glj

E Ed

: ð6:111Þ

If we consider the case of a single adatom (i¼ 0) and assume, for simplicity,

that gij¼ gdij we pass to the problem (6.86) with

V Eð Þ ¼ g2

E Ed

: ð6:112Þ

Further, we can simply use the theory developed in the previous section.
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Fig. 6.2. Left: the spin-polarized density of states of graphene with adsorbed
NO2 (the black line is for spin up and the grey line is for spin down), (a) and
(b), and the density of states for N2O4, (c)–(e), in various adsorption geo-
metries. Right: adsorption geometries obtained from the calculations.
(Reproduced with permission from Wehling et al., 2008b.)
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If the condition

g2 � Edktj j ð6:113Þ

is satisfied, then, at energies close enough to the Dirac point (jEj� jtj), the
potential (6.112) is very strong, and an adatom is effectively equivalent to a

vacancy.

To understand this very important point, let us consider the hydrogen

atom as an example. It is attached to one of the carbon atoms, transforming

locally its state from sp2 bonded to sp3 bonded; distortions make the angles

between the bonds and bond lengths locally similar to those in diamond

(Boukhvalov, Katsnelson & Lichtenstein, 2008), see Fig. 6.3. This means

that the carbon atom bonded with hydrogen is almost unavailable for p

electrons, since their energies are locally shifted too strongly. This makes it

similar to a vacancy. Ab initio calculations (Wehling et al., 2010a) show that

the local electronic structure for the case of a hydrogen adatom can be quite

accurately fitted by the hybridization model with the parameters

g � 2 tj j; Ed �
tj j
16

; ð6:114Þ

so the inequality (6.113) is satisfied with high precision. This means that

hydrogen atoms form mid-gap states, which are, however, slightly shifted

with respect to the Dirac point, because Ed< 0 (Wehling et al., 2010a; Yuan,

De Raedt & Katsnelson, 2010a), see Fig. 6.1.

Interestingly, approximately the same parameters (6.114) describe the case

of various organic groups, such as CH3, C2H5 and CH2OH, attached to

carbon atoms via the carbon carbon chemical bond (Wehling et al., 2010a).

One can assume that such bonds can be formed in real graphene with organic

hA2

hA0

hB1
dC—H

Fig. 6.3. Atomic displacements around a hydrogen atom attached to one
of the carbon atoms in graphene. Carbon atoms belonging to sublattices
A and B are shown in dark grey and light grey, respectively; hA0 ¼ 0.257 Å,
hB1 ¼ � 0.047 Å, hA2 ¼ �0.036 Å and dC H ¼ 1.22 Å. (Reproduced with
permission from Boukhvalov, Katsnelson & Lichtenstein, 2008.)
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contaminants, which, therefore, can be responsible for the appearance of

strongly ‘resonant’ scatterers (Wehling et al., 2010a; Ni et al., 2010).

The position of the impurity peak corresponds to the pole of the T-matrix,

1 ¼ V Eimp

� �

G
0ð Þ
00 Eimp

� �

ð6:115Þ

(see Eq. (6.88)). With the parameters (6.114) we find Eimp� 0.03 eV, in

agreement with the results of straightforward ab initio calculations (Wehling,

Katsnelson & Lichtenstein, 2009b). For the case of fluorine, F, and the

hydroxyl group, OH, the latter parameters give, respectively, Eimp� 0.67 eV

andEimp� 0.70 eV, so these impurities are weaker scatterers than hydrogen or

a vacancy (Wehling, Katsnelson & Lichtenstein, 2009b).

Further discussion will be presented in Chapters 11 and 12, in relation to

the effects of adatoms on electronic transport in graphene and their magnetic

properties, respectively.

6.7 Scanning tunnelling microscopy of point defects on graphene

Scanning tunnelling microscopy (STM) allows us to probe the electronic

properties of conducting materials with atomic-scale spatial resolution

(Binnig & Rohrer, 1987). Being a local probe, it is especially suitable for

studying the electronic structures of various types of defects and defect-induced

features, including many-body effects (Li et al., 1998; Madhavan et al., 1998;

Balatsky, Vekhter & Zhu, 2006). In particular, it was used to probe locally

vacancies in the top (graphene) layer of graphite (Ugeda et al., 2010) and a

magnetic adatom (Co) on graphene (Brar et al., 2011). Here we will discuss

some general peculiarities of the STM spectra of graphene (Uchoa et al., 2009;

Wehling et al., 2010b; Saha, Paul & Sengupta, 2010).

Assuming that the tunnelling between the sample and the STM tip is weak

enough one can derive, to lowest order in the tunnelling amplitude M, the

following expression for the current voltage (I V) characteristic (Tersoff &

Hamann, 1985; Mahan, 1990):

I Vð Þ ¼ pe

h

X

nns

M s
nn

�

�

�

�

2
ð

dEN s
n Eð ÞN s

n E eVð Þ f ðE eV Þ f Eð Þ½ �; ð6:116Þ

where f(E) is the Fermi distribution function, s is the spin projection, Greek

(Latin) indices label electron eigenstates for the sample (tip) cns and cns,

M s
nn ¼

h2

2m

ð

d~S c
nsrcns cnsrc
ns
� �

ð6:117Þ
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is the current-matrix element, m is the free-electron mass and the surface

integral in Eq. (6.117) is taken over arbitrary area between the tip and sample.

The spectral densities

Ns
n Eð Þ ¼ 1

p
ImGs

n Eð Þ ð6:118Þ

for the sample and a similar quantityNs
n Eð Þ for the tip determine the intensity

of tunnelling. If one neglects the spin polarization, assumes that the spectral

density of the tip is a smooth function and uses a semiclassical approximation

(Ukraintsev, 1996) one can demonstrate that, at low enough temperatures

(T�jeVj),
dI

dV
/ 1

p
Im Gii E ¼ eVð Þ; ð6:119Þ

where i is the site index for the atom of the sample nearest to the tip. This

means that, using STM, one can probe the spatial distribution of the electron

density around the defect (see Wehling et al., 2007).

Let us assume that the adatom situated at the site i¼ 0 has a resonant state

which can be of single-electron or many-body origin (e.g., the Kondo effect).

The expression (6.116) and, thus, (6.119) are correct, anyway, assuming that

the tunnelling amplitude M is small enough and the lowest-order perturb-

ation theory in M works (Mahan, 1990).

The resonance at E¼Ed is manifested in this situation via two contributions,

namely, the direct contribution of d electrons to tunnelling and the contribu-

tion of c electrons to the tunnelling, via c d hybridization. This leads to the

Fano (anti)resonance effect (Madhavan et al., 2001). For simplicity, we can

assume that d states are more localized than c states and, thus, only the second

effect is important. In this situation, we can use Eq. (6.119), assuming that G is

the Green function of c electrons. Its change due to the presence of an impurity

is determined by Eq. (6.77). On putting i¼ 0 one finds

Im G00 Eð Þ G
0ð Þ
00 Eð Þ

h i

¼ Im G
0ð Þ
00 Eð Þ

h i2

T00 Eð Þ
� 


¼ Re G
0ð Þ
00 Eð Þ

h i2

Im G
0ð Þ
00 Eð Þ

h i2
� 


Im T00 Eð Þ

þ 2

�

Im G
0ð Þ
00 Eð Þ

h i

Re G
0ð Þ
00 Eð Þ

h i




Re T00 Eð Þ: ð6:120Þ

In the case of resonance,

T00 Eð Þ � 1

E Ed þ iD
; ð6:121Þ
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where D is the halfwidth of the resonance, thus

Im T00 Eð Þ � D

E Edð Þ2 þ D
2

ð6:122Þ

has a maximum at E¼Ed and

Re T00 Eð Þ � E Ed

E Edð Þ2 þ D
2

ð6:123Þ

changes sign. Assuming that G
0ð Þ
00 Eð Þ is smoothly dependent on the energy

at the energy scale jE Edj �D and substituting Eqs. (6.120) (6.123) into

Eq. (6.119), one finds

dI

dV
/ q2 1þ 2qe 0

1þ e 02
; ð6:124Þ

where

e 0 ¼ eV Ed

D

ð6:125Þ

and the quantity

q ¼ Re G
0ð Þ
00 Edð Þ

Im G
0ð Þ
00 Edð Þ

ð6:126Þ

is called the Fano asymmetry factor (which should not be confused with the

Fano factor (3.17) the usual problem when a particular scientist made

essential contributions to various fields!). If q is large then the resonance

should be observed, whereas for small q one will observe rather the antireso-

nance (a dip in dI/dV instead of a peak).

For graphene, due to Eqs. (6.92) and (6.96), the Fano factor at jEj�D,

q ¼ 2

p
ln

D

Ed

�

�

�

�

�

�

�

�

; ð6:127Þ

is very large (Wehling et al., 2010b).

For a more detailed analysis, see Uchoa et al. (2009), Wehling et al. (2010b)

and Saha, Paul & Sengupta (2010).

6.8 Long-range interaction between adatoms on graphene

Consider now the energetics of point defects and their clusters. On substi-

tuting Eq. (6.83) for the change of the total density of states into the
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expression for the thermodynamic potential of noninteracting fermions,

Eq. (2.134), one finds

DO ¼ T

p
ImTr

ð

1

1

dE ln 1þ exp
m E

T

� �� �

@

@E
ln T̂ Eð Þ

¼ 1

p
ImTr

ð

1

1

dE f ðEÞln T̂ Eð Þ

¼ 1

p
Im

ð

1

1

dE f ðEÞln det 1 Ĝ0 Eð ÞV̂
	 


ð6:128Þ

(see Eq. (6.85)).

This expression can be used, for example, to study the effects of

interactions between impurities. Let us assume that

Vij ¼ V1di1dj1 þ V2di2dj2; ð6:129Þ

which means two defects with local potential at sites i¼ 1 and i¼ 2 (cf.

Eq. (6.86)).

Then,

det 1 Ĝ0V
	 


¼ 1 Ĝ
0ð Þ
11 V1

h i

1 Ĝ
0ð Þ
12 V2

h i

V1Ĝ
0ð Þ
12 V2Ĝ

0ð Þ
21 : ð6:130Þ

To find the interaction energy one needs to substitute Eq. (6.130) into

Eq. (6.128) and subtract the same expression with Ĝ
0ð Þ
12 ¼ 0 which corresponds

to the case of noninteracting defects. As a result, we obtain

Oint ¼
1

p
Im

ð

1

1

dE f ðEÞln 1 T
0ð Þ
11 Eð ÞG 0ð Þ

12 Eð ÞT 0ð Þ
22 Eð ÞG 0ð Þ

21 Eð Þ
h i

; ð6:131Þ

where T
0ð Þ
ii Eð Þ are the single-site T-matrices (6.88). Keeping in mind that the

functions G(0)(E) and T(E) are analytic at ImE> 0 and that the Fermi

function has poles at

E ¼ mþ ien; ð6:132Þ

where

en ¼ pTð2nþ 1Þ;

with the residues T and recalling that

Im A Eþ i0ð Þ ¼ 1

2i
A Eþ i0ð Þ A E i0ð Þ½ �; ð6:133Þ
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one can rewrite the expression (6.131) as

Oint ¼ �T
X

en

ln 1� T
0ð Þ
11 ien þ mð ÞG 0ð Þ

12 ien þ mð ÞT 0ð Þ
22 ien þ mð ÞG 0ð Þ

21 ien þ mð Þ
h i

ð6:134Þ

(Shytov, Abanin & Levitov, 2009). One can use this expression to calculate

the interaction energy for two resonant impurities, such as vacancies or

hydrogen adatoms, when Eq. (6.99) can be used for the T-matrix.

To calculate the asymptotics of the interaction energy at large distances

one can assume that G12 is small and take into account only the first term in

the Taylor expansion of Eq. (6.134):

Oint � T
X

en

T
0ð Þ
11 ien þ mð ÞG 0ð Þ

12 ien þ mð ÞT 0ð Þ
22 ien þ mð ÞG 0ð Þ

21 ien þ mð Þ: ð6:135Þ

Later we will consider the case of undoped graphene (m¼ 0).

Using this expression one can prove that the sign of the interaction is different

for impurities belonging to the same sublattice and to a different sublattice.

In the latter case, there is attraction between the impurities, decaying as

UAB rð Þ � 1

r lnðr=aÞ ð6:136Þ

(r� a), whereas for the former case there is repulsion,

UAA rð Þ � 1

r ln2ðr=aÞ
ð6:137Þ

This means that the resonant impurities would prefer to sit in different

sublattices (Shytov, Abanin & Levitov, 2009). This consideration is valid

only at large distances. Interestingly, first-principles electronic-structure

calculations (Boukhvalov, Katsnelson & Lichtenstein, 2008; Boukhvalov &

Katsnelson, 2009a) show that the same happens for the nearest-neighbour,

next-nearest-neighbour, etc. distances: the resonant impurities always prefer

to sit in different sublattices.
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7

Optics and response functions

7.1 Light absorption by Dirac fermions: visualization

of the fine-structure constant

In this chapter we will discuss electromagnetic properties of graphene related to

electron photon interaction. The discussion of optical properties related to pho-

nons (infrared adsorption, the Raman effect) will be postponed until Chapter 9.

Massless Dirac fermions in two dimensions have an amazing property:

their optical response is universal and expressed only in terms of the fine-

structure constant

a ¼ e2

hc
� 1

137:036
ð7:1Þ

(Ando, Zheng & Suzuura, 2002; Gusynin, Sharapov & Carbotte, 2006; Nair

et al., 2008). Experiments on light absorption of graphene can, literally, visualize

this fundamental constant (Nair et al., 2008). To see this, let us determine the

electric field of the light via the vector potential ~A tð Þ ¼ ~A exp iotð Þ,

~E tð Þ ¼ 1

c

q
~A

qt
¼ io

c
~A: ð7:2Þ

This is more convenient for optics than the representation via the scalar

potential, ~E ¼ ~rj, but is, of course, equivalent to it due to gauge invari-

ance. Thus, the Hamiltonian of Dirac electrons in the presence of an electric

field is (cf. Eqs. (2.20) and (2.24))

Ĥ ¼ v~s ~̂p
e

c
~A

� �

¼ Ĥ0 þ Ĥint; ð7:3Þ

where

Ĥint ¼
ve

2c
~s~A ¼ iev

2o
~s~E ð7:4Þ
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is the Hamiltonian of the electron photon interaction. The factor 1
2
in

Eq. (7.4) is necessary since the standard expression for the complex field is

~E tð Þ ¼ Re ~E exp iotð Þ
h i

¼ 1

2
~E exp iotð Þ þ ~E
 exp iotð Þ
h i

ð7:5Þ

and we take into account only the first term. This interaction induces transi-

tions from the occupied hole states ch
~k
� �

to the empty electron states ce
~k
� �

with the same wave vector ~k (see Eq. (1.30)), the intraband transitions being

forbidden by the momentum conservation (Fig. 7.1). The matrix element of

the Hamiltonian (7.4) is

chh jĤint cej i ¼
ev

2o
Ey cosj� Ex sinj
� �

; ð7:6Þ

where the andþ signs correspond to K and K0 valleys. It depends only on

the polar angle j of the ~k vector, not on its length. On averaging the square

matrix element over j one finds

Mj j2 � chh jĤint cej i
�

�

�

�

2 ¼ e2v2

8o2
~E
�

�

�

�

2
; ð7:7Þ

where we assume that the photon propagates perpendicular to the graphene

plane and, thus, the vector ~E ¼ Ex;Ey; 0
� �

lies within the plane. The absorp-

tion probability per unit time, to the lowest order of perturbation theory, is

(Landau & Lifshitz, 1977)

P ¼ 2p

h
Mj j2N e ¼ ho

2

� �

; ð7:8Þ

where N(e) is the density of states (1.72) (we take into account the spin and

valley degeneracy) and the energy of the final states is ho=2 as is obvious from

Fig. 7.1. On substituting Eqs. (1.72) and (7.7) into (7.8) we find

E = m

E = 0

Fig. 7.1. A schematic representation of direct optical transitions in graphene.
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P ¼ e2

4h2o
~E
�

�

�

�

2
: ð7:9Þ

Thus, the absorption energy per unit time is

Wa ¼ Pho ¼ e2

4h
~E
�

�

�

�

2
: ð7:10Þ

At the same time, the incident energy flux is (Jackson, 1962)

Wi ¼
c

4p
~E
�

�

�

�

2
: ð7:11Þ

The absorption coefficient is, therefore,

Z ¼Wa

Wi

¼ pe2

hc
� 2:3% ð7:12Þ

and is universal, assuming that ho > 2 mj j. Otherwise, the transitions are

forbidden by the Pauli principle (see Fig. 7.1) and Z¼ 0. For visible light,

ho � 1 2 eV is much higher than the Fermi energy in graphene. Moreover,

it is much higher than the energy of electron hopping between layers in multi-

layer graphene or graphite. Therefore, the absorption for N-layer graphene is

just NZ. This behaviour was observed experimentally for single-layer and

bilayer graphene (Nair et al., 2008) and for graphite (Kuzmenko et al.,

2008). According to Eq. (7.12), graphene is quite transparent. At the same

time, one should keep in mind that this is an absorption coefficient of more

than 2% per single atomic layer, which is a huge value. Thus, the interaction

of Dirac electrons with photons is actually very strong.

In the first work (Novoselov et al., 2004) single-layer graphene on SiO2 was

first detected just by the human eye, via a conventional (optical) microscope. It

was a lucky coincidence that the contrast due to light absorption in graphene

was strongly enhanced by interference phenomena in the SiO2 layer with

appropriate thickness. The optics of the visibility of graphene on a substrate

was considered by Blake et al. (2007) and Abergel, Russell & Falko (2007).

7.2 The optics of Dirac fermions: the pseudospin

precession formalism

The optical properties of Dirac fermions can be studied in a physically trans-

parent way using the equations of motion for the density matrix (Katsnelson,

2008). It has the form (2.173). For the Hamiltonian one can use Eq. (7.3);

however, it is more instructive to change the gauge and write
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Ĥint ¼ e~E tð Þ~̂r ¼ ie~E tð Þ~r~k ð7:13Þ

(see Eq. (2.178)). We will show explicitly that the result (7.12) can be derived

within this representation as well. Thus, the equation (2.173) reads

ih
qr̂~k

qt
¼ hv~k ~̂s; r̂~k

h i

ie ~E tð Þ�~r~k

� �

r̂~k; ð7:14Þ

where r̂~k is the 2	 2 pseudospin matrix

r̂~k

� �

ab
¼ cþ~kbc~ka

D E

ð7:15Þ

(cf. Eqs. (2.170) and (3.1)). It can be expanded in Pauli matrices,

r̂~k ¼ n~k Îþm~k ~̂s; ð7:16Þ

where Î is the unit 2	 2 matrix,

n~k ¼
1

2
Tr r̂~k ð7:17Þ

and

~m~k ¼
1

2
Tr ~̂sr̂~k

� �

ð7:18Þ

are charge and pseudospin densities (in the ~k representation). On substituting

Eq. (7.16) into Eq. (7.14) we find the separated equations for the charge

density,

qn~k
qt
¼ e

h
~E �~r~k

� �

n~k; ð7:19Þ

and the pseudospin density,

q~m~k

qt
¼ 2v ~k	 ~m~k

� � e

h
~E �~r~k

� �

~m~k: ð7:20Þ

To calculate the time-dependent current density

~j ¼ Tr ~̂jr̂
� �

¼ 2ev
X

~k

~m~k ð7:21Þ

we need only Eq. (7.20). It is rigorous (for noninteracting fermions) and

can be used to calculate both linear and nonlinear optical properties. The

first term on the right-hand side of Eq. (7.20) is nothing other than

precession, with a pseudomagnetic ‘field’ proportional to ~k acting on
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the pseudospin degree of freedom. A similar formalism was used by

Anderson (1958) as the most physical way to represent the BCS theory

of superconductivity.

To calculate the optical conductivity we will use the first-order perturb-

ation in ~E, assuming that it has the form ~E exp iotð Þ, and look for the

solution of Eq. (7.20) as

~m~k tð Þ ¼ ~m
0ð Þ
~k
þ d~m~k exp iotð Þ; ð7:22Þ

where

d~m~k � ~E:

To calculate ~m
0ð Þ
~k

we use the unitary transformation

c~k1 ¼
1

2
p x~k1 þ x~k2
� �

;

c~k2 ¼
exp ij~k

� �

2
p x~k1 x~k2

� �

;

ð7:23Þ

diagonalizing the Hamiltonian Ĥ0,

Ĥ0 ¼
X

~k

hvk xþ~k2 x~k2 xþ~k1x~k1

� �

: ð7:24Þ

So x~k1 and x~k2 are annihilation operators for holes and electrons, respectively.

At equilibrium,

xþ~ki x~ki

D E

¼ f~ki ð7:25Þ

are Fermi distribution functions depending on the energies �hvk. We

obtain

~m
0ð Þ
~k
¼

~k

2k
f~k1 f~k2

� �

: ð7:26Þ

Equation (7.20) takes the form

od~m~k ¼ 2v ~k	 d~m~k

� � e

h
~E �~r~k

� �

~m
0ð Þ
~k
: ð7:27Þ

Since the vector (7.26) lies in the xy-plane the component dmz is not coupled

to the electric field and can be found from Eq. (7.27):

dmz
~k
¼ 2v

o
kx dm

y
~k

ky dm
x
~k

� �

: ð7:28Þ
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Using Eq. (7.28) to exclude dmz from the equations for dmx and dmy we find

o2 4v2k2y

� �

dmx
~k
þ 4v2kxky dm

y
~k
¼ ieo

h
E
qm

x 0ð Þ
~k

qkx
;

4v2kxkydm
x
~k
þ o2 4v2k2x
� �

dm
y
~k
¼ ieo

h
E
qm

y 0ð Þ
~k

qkx
;

ð7:29Þ

where we have chosen the direction of the x-axis along the electric field. By

solving Eq. (7.29) and calculating the current along the x-axis as

jx ¼ 2ev
X

~k

dm x
~k
¼ s oð ÞE ð7:30Þ

we obtain the following expression for the optical conductivity:

s oð Þ ¼ 8ie2v3

ho

X

~k

ky

o2 4v2k2
ky

qm
x 0ð Þ
~k

qkx
kx

qm
y 0ð Þ
~k

qkx

0

@

1

A: ð7:31Þ

On substituting Eq. (7.26) into Eq. (7.31) we find

s oð Þ ¼ 4ie2v3

ho

X

~k

k2y

o2 4v2k2
1

k
f~k1 f~k2

� �

¼ 2ie2v3

ho

X

~k

k f~k1 f~k2

� �

o2 4v2k2
: ð7:32Þ

As is usual in calculations of response functions, one should make the

replacements o!oþ id in Eq. (7.32) and d !þ0 at the end of the calcula-

tions (Zubarev, 1974).

To calculate Re s(o), one needs to make the replacement

1

o2 4v2k2
! Im

1

oþ idð Þ2 4v2k2
¼ pid o2 4v2k2

� �

¼ pid o 2vkð Þ
4vk

: ð7:33Þ

So,

Re s oð Þ ¼ pe2v2

2ho

X

~k

f~k1 f~k2
� �

d o 2vkð Þ

¼ e2

16h
f e ¼ ho

2

� �

f e ¼ ho

2

� �� �

: ð7:34Þ
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This is the conductivity per valley per spin. On multiplying the result by 4 and

setting the temperature to zero one has

Res oð Þ ¼
0; o < 2 mj j;
e2

4h
; o > 2 mj j:

8

<

:

ð7:35Þ

This expression corresponds exactly to the absorption coefficient (7.12).

It is important to stress that the universal optical conductivity

s0 ¼
e2

4h
¼ pe2

2h
ð7:36Þ

is of the order of, but not equal to, the static ballistic conductivity

sB ¼
4e2

ph
ð7:37Þ

(see Eq. (3.18)). This is not surprising since we saw in Chapter 3 that limits

o! 0, m! 0, T! 0, etc. do not necessarily commute with one another, as

different ways to regularize the ill-posed expression (3.10).

The imaginary part of the conductivity can be restored from Eq. (7.35)

via the Kramers Kronig relations. The result is (see, e.g., Stauber, Peres &

Geim, 2008)

Im s oð Þ ¼ s0

p

4m

ho
ln

hoþ 2m

ho 2m

�

�

�

�

�

�

�

�

� �

: ð7:38Þ

At m! 0, Im s(o)! 0 for any frequency.

7.3 The absence of many-body corrections to the universal

optical conductivity

Experimental data obtained by Nair et al. (2008) agree, to within a few per

cent, with the theoretical value (7.12) (or, equivalently, (7.35)), which is,

actually, a problem. As we will see below, the electron electron interaction

in graphene is not small, and earlier considerations (Herbut, Juričić & Vafek,

2008; Fritz et al., 2008) predicted a rather strong renormalization of the

optical conductivity, of the order of 1=ln t=ðhoÞj j. Here we present, following

Katsnelson (2008), some arguments based on the phenomenological Fermi-

liquid theory stating that, actually, many-body corrections to s(o) for Dirac

fermions are absent. This seems to be confirmed by the following first-

principles GW (G is the Green function and W is the dynamically screened

interaction) calculations (Yang et al., 2009) and a more detailed many-body
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analysis (Mishchenko, 2008; Sheehy & Schmalian, 2009; de Juan, Grushin &

Vozmediano, 2010). Later, the absence of correlation corrections to the

optical conductivity of electrons on the honeycomb lattice was proved rigo-

rously for the case of a weak enough, short-range inter-electron interaction

(Giuliani, Mastropietro & Porta, 2011).

The equation of motion for the density matrix can be naturally modified to

the kinetic equation for quasiparticles within the framework of Landau

Fermi-liquid theory (Landau, 1956; Platzman & Wolf, 1973; Vonsovsky &

Katsnelson, 1989). Assuming

r̂ ¼ r̂ 0ð Þ þ dr̂ exp iotð Þ ð7:39Þ

(cf. Eq. (7.22)), one can write, instead of Eq. (7.14),

hodr̂~k ¼ hv~k ~̂s; dr̂~k

h i

ie ~E �~r~k

� �

r̂
0ð Þ
~k
þ dĤ~k; r̂

0ð Þ
~k

h i

; ð7:40Þ

where the last term contains the change of the Hamiltonian dĤ due to the

change of the density matrix. In the spirit of Landau theory it is due to the

interaction between quasiparticles characterized by some matrix F̂:

dĤ~k ¼
X

~k
0

F̂~k~k
0 dr̂~k

0 : ð7:41Þ

Equation (7.41) generalizes the standard Landau theory to the case of a

matrix distribution function for the quasiparticles.

The (pseudo)spinor structure of the matrix F̂ can be found by invoking

symmetry considerations. First, it should be rotationally invariant in the two-

dimensional space. Second, as was discussed in Chapter 1 (see Eq. (1.42)), the

Hamiltonian dĤ and, thus, the matrix F̂ cannot contain the ŝz matrix (this

follows from the inversion and time-reversal symmetries). Third, it should

vanish at ~k, ~k
0 ! 0, together with Ĥ0

~k
� �

. The most general expression satisfy-

ing these requirements is

F̂~k~k
0 ¼ A ~k ~k

0
�

�

�

�

�

�

� �

I
 I 0 þ B ~k ~k
0

�

�

�

�

�

�

� �

~k �~̂s
� �


 ~k
0�~̂s 0

� �

þ C ~k ~k
0

�

�

�

�

�

�

� �

ð~k �~k0Þðŝx 
 ŝ0x þ ŝy 
 ŝ 0yÞ: ð7:42Þ

The long-range Coulomb (Hartree) interaction singular at ~k ~k
0

�

�

�

�

�

�! 0 (see

Chapter 8) contributes to the function A only, whereas the functions B and C

are supposed to be smooth and tend to become constants as ~k ~k
0

�

�

�

�

�

�! 0.

By substituting Eqs. (7.41) and (7.42) into Eq. (7.40) we derive, instead of

Eq. (7.29),
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o2 dmx
~k

4v2k2y d ~m
x
~k
þ 4v2kxky d ~m

y
~k
¼ ieo

h
E
qm

x 0ð Þ
~k

qkx
;

4v2kxky d ~m
x
~k
þ o2 dm

y
~k

4v2k2x d ~m
y
~k
¼ ieo

h
E
qm

y 0ð Þ
~k

qkx
;

ð7:43Þ

where d ~~m ¼ d~mþ~
D, and the term

~
D~k ¼

1

vk

X

~k
0

B~k~k
0~k ~k

0
d~m~k

0

� �

þ C~k~k
0 ~k �~k0
� �

d~m~k
0

h i

ð7:44Þ

contains all correlation effects. Also, we have an additional correlation

contribution to the current density,

j corrx ¼ dĤ~k

dkx
¼
X

~k

dF̂~k~k
0

dkx
dr̂~k

0 ; ð7:45Þ

which can, after some straightforward manipulations, be rewritten as

j corrx ¼ 8e2v3
X

~k

ky

o2 4o2k2
kyD

x
~k

kxD
y
~k

� �

: ð7:46Þ

The remaining work is just direct analysis of the corrections term by term,

which shows that they all vanish by symmetry after the integration over
~k and ~k

0
(Katsnelson, 2008).

7.4 The magneto-optics of Dirac fermions

Consider now the case of Dirac fermions in a magnetic field. Instead of

momentum ~k the eigenstates of the unperturbed problem, jn〉, are characte-

rized by the Landau band index n and the coordinate of the Landau orbit

x0 (see Section 2.2). This does not lead to any difficulties since the optical

conductivity, as well as any response functions, can easily be written in

an arbitrary basis. The general formalism has already been presented in

Section 2.9 (see Eq. (2.175) and below). We will use the Hamiltonian

(2.177) with the electric field (7.5) and calculate the induced electric current,

1
2
~j exp iotð Þ þ~j
 exp iotð Þ
	 


, assuming that

~j ¼ ~̂s oð Þ~E ð7:47Þ

(in this section,~j is the electric current operator).
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Then, using Eqs. (2.176) and (2.177), we find

sab oð Þ ¼ e
X

mn

fm fn

En Em h oþ idð Þ nh j ja mj i mh jrb nj i: ð7:48Þ

We will consider here only the case of finite o, thus, the term with m¼ n does

not contribute to Eq. (7.48). Keeping in mind Eq. (2.179), we find

mh j ja nj i ¼
ie

h
mh jra nj i Em Enð Þ: ð7:49Þ

On substituting Eq. (7.49) into Eq. (7.48), taking into account that

1

En Em h oþ idð Þ
1

Em En

¼ 1

ho

1

En Em h oþ idð Þ
1

Em En

� �

;

ð7:50Þ

we obtain

sab oð Þ ¼ i

o
Pab oð Þ Pab 0ð Þ
	 


; ð7:51Þ

where

Pab oð Þ ¼
X

mn

fm fn

En Em h oþ idð Þ nh j ja mj i mh j jb nj i: ð7:52Þ

In particular, for the quantity Re sxx(o) determining the absorption of

electromagnetic waves we have

Re sxx oð Þ ¼ p

o

X

mn

fm fnð Þ nh j jx mj ij j2d En Em hoð Þ: ð7:53Þ

For the Dirac electrons jx¼ esx. Without a magnetic field this gives us

immediately the result (7.34). In the presence of a magnetic field, we have

to use as the basis functions m and n the solutions of the Landau problem

(2.45) and (2.46). They are dependent on the Landau indices and on ky (see

Eqs. (2.40) and (2.41)). Obviously, the matrix elements 〈njsxjm〉 are diagonal

in ky. Since the functions Dn(X) are orthogonal, one can see immediately that

the allowed transitions are n! n � 1 and n! (n � 1) only and, thus, the

expression (7.53) describes absorption peaks at

ho ¼ Enj j � Enþ1j j; ð7:54Þ

or at o ¼ oc pþ 1
p � p

p� �

; where p¼ 0, 1, 2, . . . The complete expression

can be found in Gusynin, Sharapov & Carbotte (2007a, 2009).
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This absorption has been observed experimentally (Sadowski et al., 2006;

Jiang et al., 2007a; Witowski et al., 2010). The results are in agreement with

Eq. (7.54). This effect can be used as an alternative method by which to

measure the Fermi velocity v in graphene.

Another interesting magneto-optical effect is the polarization rotation of

propagating light in the magnetic field, that is, the Faraday effect (Landau &

Lifshitz, 1984). The rotation angle is proportional to Resxy, which has

absorption peaks at the same frequencies (7.54) as Re sxx (for the theory of

the Faraday effect in graphene, see Fialkovsky & Vassilevich, 2009). Near the

resonances, the rotation is very large, as was observed experimentally by

Crassee et al. (2011). This giant Faraday effect is potentially interesting for

applications.

7.5 Optical properties of graphene beyond the Dirac approximation

Consider now the theory of optical conductivity for a honeycomb lattice,

beyond the Dirac cone approximation, so that it can be used at ho � tj j as
well (Gusynin, Sharapov & Carbotte, 2007b; Stauber, Peres & Geim, 2008).

We will start with the expression (2.20) for the Hamiltonian of band electrons

in the presence of a vector potential; in the single-band approximation it

works also for the time-dependent vector potential ~A tð Þ.
In particular, in the nearest-neighbour approximation the Hamiltonian has

the form

Ĥ ~k
� �

¼
0 tS ~k

e~A

hc

 !

tS
 ~k
e~A

hc

 !

0

0

B

B

B

B

@

1

C

C

C

C

A

ð7:55Þ

(cf. Eqs. (1.14) and (1.15)). To calculate the linear response, we need to

expand the right-hand side of Eq. (7.55) up to second order in ~A. Indeed,

the electric current operator

~̂j ¼ c
dĤ

d~A
ð7:56Þ

has paramagnetic (p) and diamagnetic (d) components,

ĵa ¼ ĵa
pð Þþ ĵa

dð Þ
; ð7:57Þ
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where

~̂j
pð Þ

a ¼ c
dĤ

d~Aa

 !

~A 0

ð7:58Þ

and

~̂j
dð Þ

a ¼ 1

2
c 2
X

b

d2Ĥ

d~Aa d~Ab

 !

~A 0

Ab: ð7:59Þ

When calculating the average current density to linear order in ~A,

ja ¼ Tr ĵ
pð Þ

a r̂ 0
� �

þ Tr ĵ
dð Þ

a r̂0

� �

; ð7:60Þ

both terms contribute to the conductivity. Further calculations are quite

straightforward (Gusynin, Sharapov & Carbotte, 2007b; Stauber, Peres &

Geim, 2008).Wewill present here the expressions forRe sxx (o)¼Re s (o) only:

Re s oð Þ ¼ Dd oð Þ þ pt2e2a2

8h3oA0

X

~k

F ~k
� �

f~k1 f~k2

� �

	 d o e ~k
� �� �

d oþ e ~k
� �� �h i

; ð7:61Þ

where the first term originates from j(d), the Drude weight is

D ¼ e2a2

3h2A0

X

~k

e ~k
� �

f~k1 f~k2
� �

; ð7:62Þ

e ~k
� �

¼ t S ~k
� ��

�

�

�

�

� t > 0ð Þ, f~k1;2 are given by Eq. (7.25), A0 ¼ 3 3
p

a2=2 is the

area

of the unit cell and

F ~k
� �

¼ 18 4 S ~k
� ��

�

�

�

�

�

2

þ 18
Re S ~k

� �h i2

Im S ~k
� �h i2

S ~k
� ��

�

�

�

�

�

2
: ð7:63Þ

The optical conductivity (7.61) at o 6¼ 0 is proportional to the density of

states

N Eð Þ ¼
X

~k

d Ej j e ~k
� �� �

ð7:64Þ
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(it differs by a factor of 2 from Eq. (1.70)). It can be analytically expressed

(Hobson & Nierenberg, 1953) in terms of the elliptic integral

K mð Þ ¼
ð

p=2

0

dj

1 m sin2j

q ; ð7:65Þ

namely

N Ej jð Þ ¼ 2 Ej j
p2t2

1

j Ej j=tð Þ
p K

4 Ej j=t
jð Ej j=tÞ

� �

; 0 < Ej j < t;

1
4 Ej j=t

p K
jð Ej j=tÞ
4 Ej j=t

� �

; t < Ej j < 3t;

8

>

>

>

<

>

>

>

:

ð7:66Þ

where

j xð Þ ¼ 1þ xð Þ2 x2 1
� �2

4
: ð7:67Þ

This function is shown in Fig. 7.2. It has logarithmic divergences at E¼�t
corresponding to Van Hove singularities in the electron density of states.

At 0 < ho < t the optical conductivity (7.61) coincides with Eq. (7.35). The

corrections are (Stauber, Peres & Geim, 2008)

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

E/t

0.00

0.25

0.50

0.75

1.00

1.25

N
(E

)

Fig. 7.2. The density of states (7.66). The logarithmic divergences at E ¼ �t
are Van Hove singularities.
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s oð Þ � s0

2
tanh

hoþ 2m

4T

� �

þ tanh
ho 2m

4T

� �� �

1þ hoð Þ2
36t2

" #

: ð7:68Þ

The curve for the whole interval is shown in Fig. 7.3 (Yuan, De Raedt &

Katsnelson, 2010a). One can see a singularity at ho ¼ 2t; however, a moder-

ate disorder (such as 1% of vacancies or resonant impurities) smears it

essentially.

For the case of bilayer graphene we have a Van Hove singularity at low

energy, due to trigonal warping and the merging of four Dirac ones to give

one paraboloid (see Section 1.4). Also, the gap can be made to open in that case

by applying a bias between the layers. Experimentally, these effects on the

infrared optics of bilayer graphene have been studied byKuzmenko et al. (2009).

7.6 The dielectric function of Dirac fermions

Now we will consider the response function for an inhomogeneous external

perturbation,

Vext ~r; tð Þ ¼
X

~k

C
þ
~k
V̂ ext
~q C~kþ~q exp i~q~r iotð Þ; ð7:69Þ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

w /t

0

1
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3

4

s
x
x
/s

0

Fig. 7.3. The frequency dependence of Re sxx(o) for an ideal honeycomb
lattice in the nearest-neighbour approximation (dashed line) and for one with
1% of vacancies, randomly distributed (solid line); s0 is given by Eq. (7.36).
(Reproduced with permission from Yuan, De Raedt & Katsnelson, 2010a.)
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where Cþ~k ¼ ðc
þ
~k1
;cþ~k2Þ is the spinor creation operator, V̂ ext

~q is a generic 2	 2

matrix and ~q is the wave vector of the inhomogeneity. We need to pass to

electron- and hole-creation operators (7.23). The result is

C
þ
~k
V̂ ext
~q C~kþ~q ¼ X

þ
~k
Û~qX~kþ~q; ð7:70Þ

where Xþ~k ¼ xþ~k1; x
þ
~k;2

� �

and

Û~q ¼
1

2

1 exp ij~kþ~q

� �

1 exp ij~kþ~q

� �

0

@

1

AV̂ ext
~q

1 1

exp ij~k

� �

exp ij~k

� �

� �

: ð7:71Þ

Then, the perturbation of the density matrix (2.175) is the operator

r̂ 0 exp i~q~r iotð Þ with the matrix elements (in the x representation)

r̂ 0~kþ~q;i;~k;j ¼
f~k;j f~kþ~q;i

E~k;j E~kþ~q;i h oþ idð Þ Û~q

� �

ij
ð7:72Þ

and the perturbation of the operator

Ĵ ¼
X

~k~q

C
þ
~k
Ĵ~qC~kþq �

X

~k~q

X
þ
~k
~̂J~qC~kþ~q ð7:73Þ

is

dJ~q ¼ Tr Ĵr̂ 0
� �

¼
X

~k

f~k;j f~kþ~q;i
E~k; j E~kþ~q;i h oþ idð Þ Û~q

� �

ij
~̂J~q

� �

ji
: ð7:74Þ

Consider first the case of a scalar potential and the density operator Ĵ ¼ n̂; in

that case both V̂ ext
~q and Ĵ~q are proportional to the unit matrix. We obtain

dn~qo ¼ P ~q;oð ÞV̂ ext
~qo ; ð7:75Þ

where

P ~q;oð Þ ¼ gsgv
X

~k

X

s; s 0 �
lss 0 ~k;~q
� � f sE ~k

� �h i

f s 0E ~kþ~q
� �h i

s 0E ~kþ~q
� �

sE ~k
� �

þ h oþ idð Þ
ð7:76Þ

is the polarization operator, E ~k
� �

¼ hvk,

lss 0 ~k;~q
� �

¼ 1

2
1þ ss 0

kþ q cosj

~kþ~q
�

�

�

�

�

�

0

B

@

1

C

A
; ð7:77Þ
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j is the angle between ~k and ~q and the factors gs¼ 2 and gv¼ 2 take into

account spin and valley degeneracy (Ando, 2006;Wunsch et al., 2006; Hwang&

Das Sarma, 2007).

Perturbation of the electron density will induce perturbation of the potential,

V ind
~qo ¼ vC qð Þdn~qo; ð7:78Þ

where

vC qð Þ ¼ 2pe2

qeext
ð7:79Þ

is the Fourier component of the Coulomb interaction

vC rð Þ ¼ e2

reext
ð7:80Þ

in two dimensions and eext is the external dielectric constant (e.g., due to

screening by a substrate). The total potential perturbation is

V~qo ¼ V ext
~qo þ V ind

~qo ¼
V ext
~qo

e ~q;oð Þ : ð7:81Þ

The last equality in Eq. (7.81) defines the dielectric function e ~q;oð Þ. Within

the random-phase approximation (RPA) it is assumed that, for a system of

interacting fermions, the induced density has formally the same expression as

for the noninteracting fermions, (7.75) and (7.76), but with the replacement

V ext!V in Eq. (7.75). This means that the interaction effects are taken into

account via a self-consistent mean field (Vonsovsky & Katsnelson, 1989).

As a result,

e ~q;oð Þ ¼ 1þ vC qð ÞP q;oð Þ: ð7:82Þ

If we take into account also the external screening the total dielectric

function is

etot q;oð Þ ¼ eexte q;oð Þ ¼ eext þ
2pe2

q
P q;oð Þ: ð7:83Þ

In the case when graphene lies between two subspaces with dielectric con-

stants e1 and e2, one has (Landau & Lifshitz, 1984)

eext ¼
e1 þ e2

2
: ð7:84Þ

For the two most popular substrates, SiO2 and BN, e2� 4, so, assuming e1¼ 1

(vacuum, or air), one has eext� 2.5.
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Consider first the case of undoped graphene (m¼ 0) at zero temperature.

Then, only interband transitions (s¼þ and s0¼ or vice versa) contribute to

Eq. (7.76) and

P0 q;oð Þ ¼ gsgv

h

X

~k

1
kþ q cosjð Þ

~kþ~q
�

�

�

�

�

�

0

B

@

1

C

A

v kþ ~kþ~q
�

�

�

�

�

�

� �

v2 kþ ~kþ~q
�

�

�

�

�

�

� �2

oþ idð Þ2
: ð7:85Þ

As the next step, we calculate ImP0 (q, o). It contains d v kþ ~kþ~q
�

�

�

�

�

� o
� �h i

,

which allows us to calculate the integral (first, in o and then in k) in a quite

elementary manner. The result is

ImP0 q;oð Þ ¼ gsgv

16h

q2

o2 v2q2
p y o vqð Þ; ð7:86Þ

where y(x> 0)¼ 1, y(x< 0)¼ 0 is the step function. Noticing that the analytic

function 1= zþ id
p

is purely imaginary at real z< 0 and purely real at real

z> 0, one can do analytic continuation immediately, thus having

ReP0 q;oð Þ ¼ gsgv

h

q2

v2q2 o2
p y vq oð Þ: ð7:87Þ

On combining Eqs. (7.86) and (7.87) we have a very simple answer:

P0 q;oð Þ ¼ gsgv

16h

q2

v2q2 oþ idð Þ2
q : ð7:88Þ

(Gonzáles, Guinea & Vozmediano, 1999).

At o¼ 0, P0(q, o) � q and the dielectric function e(q) is actually not

dependent on q:

e ¼ eext þ
pe2

2hv
: ð7:89Þ

For graphene,

a ¼ e2

hv
� 2:2 ð7:90Þ

and the second term on the right-hand side of Eq. (7.89) is about 3.5.

Within the RPA, this result is exact, and high-energy states cannot change

the value of e(q¼ 0). Indeed, for arbitrary band structure with the Bloch

states m~k
�

�

�

E

, one has (Vonsovsky & Katsnelson, 1989)

P ~q;o ¼ 0ð Þ ¼ 2
X

mn

X

~k

f
n;~k f

m;~kþ~q
E
m;~kþ~q E

n;~k

n; ~k
D �

�

�m; ~kþ~qi
�

�

�

�

�

�

2

ð7:91Þ

(the factor of 2 is due to spin degeneracy).
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Let us exclude the Dirac point, considering the case when (at T¼ 0) we

have completely occupied and completely empty bands and some gap in

between. Then Eq. (7.91) can be rewritten as

P ~q;o ¼ 0ð Þ ¼ 4
X

occ

n

X

empty

m

1

E
m;~kþ~q E

n;~k

n; ~k
D �

�

�m; ~kþ~qi
�

�

�

�

�

�

2

; ð7:92Þ

which is obviously proportional to q2 at q! 0. More explicitly, on writing

m; ~kþ~q
�

�

�

E

� 1þ~q ~r~k

� �

m; ~k
�

�

�

E

ð7:93Þ

and using Eq. (2.85) one finds for ~q! 0

P ~q;o ¼ 0ð Þ ¼
X

ab

Cabqaqb; ð7:94Þ

where

Cab ¼ 4
X

occ

n

X

empty

m

1

E
m;~k E

n;~k

� �3
m; ~k
D �

�

�

qĤ

qka
n; ~k
�

�

�

E

n; ~k
D �

�

�

qĤ

qkb
m; ~k
�

�

�

E

ð7:95Þ

is some finite tensor. Since vc(q) � 1/q we have, in two dimensions, e(q! 0,

o¼ 0)¼ 1 for any gapped state. This means that only the region close to the

Dirac point contributes to this quantity. Note that first-principles GW calcula-

tions do indeed give results quite similar to those obtained by use of Eq. (7.89)

(Schilfgaarde & Katsnelson, 2011).

Consider now the case of doped graphene (to be specific, we put m> 0, i.e.,

the case of electron doping). The calculations are quite cumbersome but

straightforward. The result is (Wunsch et al., 2006; Hwang &Das Sarma, 2007)

P q;oð Þ ¼ P0 q;oð Þ þP1 q;oð Þ;

with

P1 q;oð Þ ¼ gsgvm

2ph2v2
� gsgvq

2

16ph o2 � v2q2
p

	 G
hoþ 2m

hvq

� �

� y
2m� ho

hvq
� 1

� �

G
2m� ho

hvq

� �

� ip

� ��

� y
ho� 2m

hvq
þ 1

� �

G
ho� 2m

hvq

� �


; ð7:96Þ
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where

G xð Þ ¼ x x2 1
p

ln xþ x2 1
p� �

: ð7:97Þ

For generalization of this expression to the case of gapped graphene, see

Pyatkovskiy (2009).

Now we will consider different partial cases of this general expression.

Keeping in mind the case of graphene, we will put gs¼ gv¼ 2.

7.7 Static screening

We start with the case o¼ 0. The result is (Gorbar et al., 2002; Ando, 2006;

Wunsch et al., 2006; Hwang & Das Sarma, 2007)

P q; 0ð Þ ¼ 2kF

phv
	

1; q < 2kF;

1� 1

2
1� 2kF

q

� �2
s

þ q

4kF
cos 1 2kF

q

� �

; q > 2kF:

8

>

<

>

:

ð7:98Þ

Interestingly, at q< 2kF, P(q, 0)¼ constant, due to cancellation of the q

dependence in the (formally) m-dependent contribution

Pþ q; 0ð Þ ¼ 2kF

phv
1

pq

8kF

� �

ð7:99Þ

and the contribution for the undoped case (see Eq. (7.88)),

P0 q; 0ð Þ ¼ q

4hv
: ð7:100Þ

It is instructive to compare Eq. (7.98) with that for a conventional, nonrelati-

vistic two-dimensional electron gas (Stern, 1967):

P q; 0ð Þ ¼ N EFð Þ 	
1; q < 2kF;

1 1
2kF

q

� �2
s

; q > 2kF:

8

>

<

>

:

ð7:101Þ

In both cases, the polarization operator is constant at q< 2kF. At the same

time, the behaviour at q> 2kF is essentially different. For the nonrelativistic

case P(q, o) decays with increasing q, as 1/q2 at q!1, whereas for the case

of massless Dirac fermions P(q, 0) increases linearly with increasing q, due

to the contribution (7.100). The behaviour of expressions (7.98) and (7.101) at

q! 2kF is also essentially different. Whereas for the nonrelativistic electron

gas dP q; 0ð Þ � q 2kF
p

, with a divergent derivative, for the case of graphene

the singularity is weaker, dP(q, 0) � (q 2kF)
3/2.
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The result for small q corresponds to the Thomas Fermi approximation

(Nomura & MacDonald, 2006; Katsnelson, 2006c). The latter (Lieb, 1981)

assumes that the perturbation V ~rð Þ is smooth enough that its effect on the

electron density

n mð Þ ¼
ð

m

0

dEN Eð Þ ð7:102Þ

can be taken into account just by making the replacement n mð Þ ! n m V ~rð Þ½ �.
This means that the potential just shifts locally the maximum band energy

EF ~rð Þ; such that

EF ~rð Þ þ V ~rð Þ ¼ m: ð7:103Þ
The self-consistent equation for the total potential, which is similar to

Eq. (7.81), reads

V ~rð Þ ¼ Vext ~rð Þ þ
e2

eext

ð

d~r 0
nint ~r

0ð Þ
~r ~r 0j j; ð7:104Þ

where

nint ~rð Þ ¼ n m V ~rð Þ½ � n mð Þ ð7:105Þ

is the induced change of the electron density. Assuming that the perturbation

V is small, one can expand (7.105) as follows:

nint ~rð Þ �
qn

qm
V ~rð Þ ¼ N EFð ÞV ~rð Þ; ð7:106Þ

where the last identity assumes T¼ 0 (cf. Eq. (2.138)).

OnFourier-transformingEq. (7.104) and comparing the resultwithEq. (7.81)

one finds

e q; 0ð Þ ¼ eext þ
2pe2N EFð Þ

q
¼ eext 1þ k

q

� �

; ð7:107Þ

where

k ¼ 4e2 mj j
eexth

2v2
ð7:108Þ

is the inverse Thomas Fermi screening radius. This result coincides exactly

with Eqs. (7.98) and (7.101) at q< 2kF. Thus, for a two-dimensional electron

gas, the nonrelativistic and ultrarelativistic versions of Thomas Fermi theory

both give exactly the same result as does the RPA for static screening
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with q< 2kF. For a three-dimensional electron gas the situation is different

(Vonsovsky & Katsnelson, 1989).

Consider now the real-space effects of static screening. If the external

potential Vext(r) is radially symmetric, with the Fourier component V ext
q

depending only on the modulus q, the expression for the total potential is

V rð Þ ¼
ð

d~q

2pð Þ2
exp i~q~rð Þ

Vext
q

e q; 0ð Þ ¼
ð

1

0

dq q

2p
J0 qrð Þ

Vext
q

e q; 0ð Þ : ð7:109Þ

At r!1, there are two important contributions to the integral (7.109), from

the region of small q (to compensate for large r in the argument of the Bessel

function) and from the region q¼ 2kF, where e(q, 0) has a singularity in

P(q, o) (7.98). In the three-dimensional case the first contribution decays

exponentially at r!1, whereas the second oscillates and decays as

cos (2kFr)/r
3, beingwhat is called a Friedel oscillation (Vonsovsky&Katsnelson,

1989). In the two-dimensional case, the situation is different since the Thomas

Fermi (small-q) contribution decays also as 1/r3 (Katsnelson, 2006c; Wunsch

et al., 2006). As a result, the asymptotics of the induced density around the point

defect is (Wunsch et al., 2006)

nind rð Þ � aþ b cos 2kFrð Þ
r3

; ð7:110Þ

with some parameters a and b dependent on kF and on the potential.

In a nonrelativistic electron gas in two dimensions, nind (r) � cos(2kFr)/r
2

since the singularity in P (q,o) at q! 2kF is stronger. In graphene, the

Thomas Fermi and Friedel contributions to the induced density around

point defects are comparable at r!1.

The first-principles GW results for the dielectric function e(q, 0) of graphene

(Schilfgaarde & Katsnelson, 2011) show that the Dirac approximation works

for q� 0.05 Å 1; at q� 0.1 Å 1 the polarization operator approximately halves

in comparison with the value (7.100).

7.8 Plasmons

Let us consider now the opposite limiting case,

o� vq: ð7:111Þ
The polarization operator (7.96) in the limit of small q takes the form

P q! 0;oð Þ ¼ q2

2pho

ip

2
y ho 2mð Þ 2m

ho
þ 1

2
ln

hoþ 2m

ho 2m

�

�

�

�

�

�

�

�

� �

: ð7:112Þ
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At ho > 2m it has an imaginary part that is at least comparable to the real

part, so the equation

e q;oð Þ ¼ 0 ð7:113Þ
which determines the spectrum of plasma oscillations (Platzman &Wolf, 1973;

Vonsovsky & Katsnelson, 1989) has no real solutions. In the opposite limit

ho� 2m ð7:114Þ
one has

P q! 0;oð Þ � mq2

p hoð Þ2
ð7:115Þ

and the solution of Eq. (7.113) is

o ¼ 2e2m

h3eext
q

s

: ð7:116Þ

At q! 0, the expression (7.116) obviously satisfies the condition (7.114).

The existence of the low-frequency plasmon mode with the dispersion

o � q
p

is a general property of a two-dimensional electron gas (Ando,

Fowler & Stern, 1982). However, the dependence of the plasmon dispersion

relation on the electron density n is different: for graphene, due to Eq. (7.116),

o � n1/4q1/2, whereas for the nonrelativistic case o � n1/2q1/2.

Outside the region qv<o< 2m P(q, o) has a large imaginary part and the

plasmon is essentially damped. This is a partial case of Landau damping due to

a decay into incoherent electron hole excitations (Vonsovsky & Katsnelson,

1989). It was argued, however, by Gangadharaiah, Farid &Mishchenko (2008)

that higher-order correlation effects, beyond the RPA, can change the situ-

ation, leading to a well-defined plasmon mode with o< qv, even at m¼ 0.

Beyond the Dirac approximation, there are two important physical mech-

anisms that can lead to additional plasmon modes. First, there is Coulomb

interaction between electrons from different valleys, resulting in the appear-

ance of intervalley plasmons, with a linear dispersion lawo� q (Tudorovskiy &

Mikhailov, 2010). Second, there is a Van Hove singularity in the optical

conductivity at o¼ 2t (see Section 7.5), because of which high-energy ‘optical’

plasmons arise (Stauber, Schliemann & Peres, 2010; Hill, Mikhailov & Ziegler,

2009; Yuan, Roldán & Katsnelson, 2011).

7.9 Transverse response functions and diamagnetic susceptibility

Similarly to the previous sections, one can consider the response of electrons

in graphene to a vector potential (Principi, Polini & Vignale, 2009). One needs
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just to choose V̂ ext
q ¼ ~̂s in Eq. (7.70). In general, instead of the polarization

operator (7.76) we introduce a set of response functions

Pab ~q;oð Þ ¼ gsgv
X

~k

X

s;s 0¼�
l
ab
ss 0

~k;~q
� � f sE ~k

� �h i

� f s 0E ~kþ~q
� �h i

s 0E ~kþ~q
� �

� sE ~k
� �

þ h oþ idð Þ
; ð7:117Þ

where

l
ab
ss 0

~k;~q
� �

¼ cs
~k
� �D �

�

�sa cs 0
~kþ~q
� ��

�

�

E

cs 0
~kþ~q
� �D �

�

�sb cs
~k
� ��

�

�

E

; ð7:118Þ

in which cs
~k
� �

are electron and hole wave functions (1.30). The density

density response function is, in this notation, P00, where s0¼ I. For example,

lxxss 0
~k;~q
� �

¼
1þ ss 0 cos j~k þ j~kþ~q

� �

2
: ð7:119Þ

For the response function determining the current in the x-direction induced

by the vector potential in the x-direction ð ĵx ¼ vŝxÞ

jx~qo ¼
e2v2

c
Pxx ~q;oð ÞAx

~q;o: ð7:120Þ

When calculating this quantity we are faced with an important problem

showing that sometimes one needs to be very careful when using the Dirac

approximation. Let us put o¼ 0 and express the vector potential in terms of

an external magnetic field ~B ¼~r	 ~A ¼ 0; 0;B x; yð Þð Þ:

B~q ¼
i

qy
Ax

q: ð7:121Þ

Phenomenologically, the magnetic field induces a magnetization
~M ¼ 0; 0;M x; yð Þð Þ proportional to the magnetic field

M~q ¼ w ~qð ÞB~q ð7:122Þ
and the current

~j ¼ c ~r	 ~M ð7:123Þ
(Jackson, 1962; Landau & Lifshitz, 1984), or, equivalently,

jx~q ¼ icqyM~q: ð7:124Þ

On substituting Eqs. (7.121) (7.123) into Eq. (7.120) one finds

Pxx ~qð Þ ¼
q2yc

2

v2e2
w ~qð Þ ð7:125Þ
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and, obviously, Pxx ~q ¼ 0ð Þ ¼ 0. Physically, this means that, due to the gauge

invariance, a constant vector potential cannot induce any physical response.

However, on substituting Eq. (7.119) into Eq. (7.117) we have, even at

m¼ 0, a divergent integral over ~k
�

�

�

�

�

�. On introducing by hand a cut-off

~k
�

�

�

�

�

� � kmax we find the result (Principi, Polini & Vignale, 2009)

Pxx ~qð Þ ¼ gsgv
kmax

4phv
; ð7:126Þ

which is finite and, moreover, tends to infinity at kmax!1. This is a

pathological property of our model, reflecting the fact that by introducing

the cut-off we break the gauge invariance ~k! ~k e~A=ðhcÞ. The contribution
(7.126) should be just subtracted from the answer.

By calculating Pxx (qy, 0) at small qy and using Eq. (7.125) we find the

magnetic susceptibility describing the effect of the magnetic field on the

orbital motion of electrons:

w ¼ gsgv

24p

e2v2

c2
1

T cosh2 m=ð2TÞ½ �
¼ gsgv

6p

e2v2

c2
d mð Þ; ð7:127Þ

where the last equality assumes the limit T! 0. This expression was first

obtained by McClure (1956) by differentiation of the thermodynamic poten-

tial (2.134) with respect to the magnetic field (see also Sharma, Johnson &

McClure, 1974; Safran & DiSalvo, 1979; Koshino & Ando, 2007, 2010).

The result (7.127) is really unusual. It means that at zero temperature and

finite doping the orbital susceptibility of graphene within the Dirac model

should be zero! Usually, the contribution of the orbital motion of electrons to

the magnetic susceptibility is diamagnetic (Landau Peierls diamagnetism),

but here we have an exact cancellation of intraband and interband contribu-

tions; for a general discussion of these contributions, see Wilson (1965). In

multilayer graphene and graphite, there is no cancellation but, rather, a strong

diamagnetism (Sharma, Johnson & McClure, 1974; Koshino & Ando, 2010).

As a result, the orbital magnetism of electrons in single-layer doped gra-

phene is completely determined by electron electron interactions (Principi

et al., 2010). Using perturbation theory one can find that the resulting effect is

paramagnetic (w> 0), with

w ¼ gsgv
e2v2

c2
e2

hveext

L

EF

; ð7:128Þ

where L is a function of the interaction constant, of the order of 10 2

(Principi et al., 2010).

Other nontrivial manifestations of the electron electron interactions will

be considered in the next chapter.

184 Optics and response functions

              

       



8

The Coulomb problem

8.1 Scattering of Dirac fermions by point charges

Now we come back to the problem of scattering of Dirac electrons by a radially

symmetric potential V(r) considered in Section 6.1. The case of a Coulomb

potential

V rð Þ ¼ Ze2

eextr
� hvb

r
ð8:1Þ

deserves a special consideration for reasons that will be clarified in this

chapter. Here eext is the dielectric constant due to substrate and other external

factors and

b ¼ Ze2

eexthv
ð8:2Þ

is the dimensionless interaction strength (the sign is chosen such that positive

b corresponds to attraction). This problem has been considered for the case of

two-dimensional massless Dirac equations by Shytov, Katsnelson & Levitov

(2007a, 2007b), Pereira, Nilsson & Castro Neto (2007) and Novikov (2007).

Here we will follow the works by Shytov, Katsnelson and Levitov.

Instead of using the general expression (5.19) it is convenient to try the

solution of the Coulomb problem in the form

C r;jð Þ ¼ wþ rð Þ þ w rð Þ
wþ rð Þ w rð Þ½ �exp ijð Þ

� �

r s 1=2 exp i m
1

2

� �

j

� �

exp ikrð Þ; ð8:3Þ

where m is half-integer,

m ¼ � 1

2
;� 3

2
; . . . ð8:4Þ
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and the parameters k and s should be found from the behaviour of solutions

at large and small r, respectively. For the potential (8.1), we find

s ¼ m2 b2
q

; k ¼ E

hv
; ð8:5Þ

where E is the energy. On substituting Eqs. (8.1) and (8.3) into the Dirac

equation (6.1) we find, instead of Eq. (6.2),

r
dwþ
dr
þ s ibþ 2ikrð Þwþ mw ¼ 0;

r
dw

dr
þ sþ ibð Þw mwþ ¼ 0:

ð8:6Þ

Note that s can be either real (if jmj> jbj) or imaginary (if jmj< jbj); the
behaviours of solutions in these two cases are essentially different, as will be

discussed later.

Using the second of Eqs. (8.6) one can express w+ in terms of w and

substitute it into the first equation. Then, after introducing a new independ-

ent variable

z ¼ 2ikr; ð8:7Þ

one has a confluent hypergeometric equation, or Kummer’s equation

(Abramowitz & Stegun, 1964)

z
d 2w

dz2
þ c zð Þ dw

dz
aw ¼ 0; ð8:8Þ

where

c ¼ 2sþ 1; a ¼ sþ ib: ð8:9Þ

Its general solution has the form

w zð Þ ¼ A1F1 a; c; zð Þ þ Bz1 c
1F1 a cþ 1; 2 c; zð Þ; ð8:10Þ

where A and B are arbitrary constants and

1F1 a; c; zð Þ ¼ G cð Þ
G að Þ

X

1

n 0

G aþ nð Þ
G cþ nð Þ

zn

n!
ð8:11Þ

is the confluent hypergeometric function (1F1(a, c; 0) = 1).

We will start with the case of real s, that is, jmj> jbj. Then, only the first

term in Eq. (8.10) is regular at r¼ 0 and is therefore allowed, thus

w zð Þ ¼ A1F1 sþ ib; 2sþ 1; zð Þ: ð8:12Þ
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Using the identity

z
d

dz
1F1 a; c; zð Þ ¼ a 1F1 aþ 1; c; zð Þ 1F1 a; c; zð Þ½ � ð8:13Þ

one finds from Eq. (8.6)

wþ zð Þ ¼ A
sþ ib

m
1F1 sþ 1þ ib; 2sþ 1; zð Þ: ð8:14Þ

Equations (8.12) and (8.14) give us a formal solution of our problem. Using

the asymptotic expression (Abramowitz & Stegun, 1964)

1F1 a; c; zð Þ � G cð Þ
G c að Þ zð Þ a þ G cð Þ

G að Þ exp zð Þza c ð8:15Þ

for jzj� 1, one finds for kr� 1

w rð Þ ¼ l exp ib ln 2krð Þ½ �
2krð Þs ;

wþ rð Þ ¼ l
 exp ib ln 2krð Þ½ �exp 2ikrð Þ
2krð Þs ;

ð8:16Þ

where l is a constant dependent on m and b but not on k. It follows from

Eqs. (8.16) that w and w+ represent scattered and incident waves, respect-

ively (we have to recall our definition of k (8.5); E is assumed to be positive).

Their ratio gives us the scattering phases dm(k) (cf. Eq. (6.11)):

w rð Þ
wþ rð Þ ¼ exp 2idm kð Þ þ 2ikr½ �;

dm kð Þ ¼ b ln 2krð Þ þ arg l:

ð8:17Þ

The logarithmic dependence in Eq. (8.17) is typical for the phases coming

from the 1/r Coulomb tail of the potential (Landau & Lifshitz, 1977). Since

this contribution does not depend on m it does not affect the angular

dependence of the scattering current, giving just an irrelevant factor

jexp[ ib ln(2kr)]j2¼ 1. The relevant scattering phases are arg l. Its explicit

dependence on m and b is not important for us; it suffices to know that they

are k-independent. From the general expression for the transport cross-

section (6.26) one can see immediately that for the Coulomb scattering

str �
1

k
; ð8:18Þ
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which gives us for the contribution of Coulomb impurities to the resistivity

(cf. Section 6.2)

r � h

e2
nimp

n
: ð8:19Þ

This contribution is much larger (by a factor of (nimpR
2) 1) than that of

short-range scatterers (Eq. (6.36)) and corresponds, at least qualitatively, to

the experimentally observed V-shape of the dependence of the conductivity

on the electron concentration (Novoselov et al., 2005a). It is not surprising

therefore that charge impurities were suggested initially to be the main factor

limiting electron mobility in graphene (Nomura & MacDonald, 2006; Ando,

2006; Adam et al., 2007). The real situation is probably much more compli-

cated and will be discussed in Chapter 11. It is clear, anyway, that long-range

scattering potentials deserve special attention in the case of graphene. How-

ever, screening effects are important and should be taken into account, as will

be discussed later.

Consider now the case jbj> jmj where s¼ ig,

g ¼ b2 m2

q

: ð8:20Þ

Then both terms in Eq. (8.10) are formally allowed:

w zð Þ ¼ A1F1 i gþ bð Þ; 1þ 2ig; zð Þ þ Bz 2ig
1F1 i b gð Þ; 1 2ig; zð Þ: ð8:21Þ

This means that the Dirac equation with the potential (8.1) for large enough

jbj is ill-defined. To find a solution, one needs to add some boundary condi-

tions at small but finite r.

For jkrj� 1,

w zð Þ � Aþ B exp pgð Þexp 2ig ln 2krð Þ½ �: ð8:22Þ

The solution w+(z) corresponding to Eq. (8.21) is

wþ zð Þ ¼ iA
gþ b

m
1F1 1þ igþ ib; 1þ 2ig; zð Þ

þ iB
b g

m
z 2ig

1F1 1þ ib ig; 1þ 2ig; zð Þ: ð8:23Þ

Its asymptotics at jkrj� 1 is

wþ zð Þ � iA
gþ b

m
þ iB

b g

m
exp pgð Þexp 2ig ln 2krð Þ½ �: ð8:24Þ
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To be specific, let us use ‘zigzag’ boundary conditions c2(r)¼ 0 at some cut-

off radius r¼ r0, which means (see Eq. (8.3))

w r0ð Þ ¼ wþ r0ð Þ: ð8:25Þ

By substituting Eqs. (8.22) and (8.24) into Eq. (8.25) one can find the ratio

B/A and then use it to find the ratio w (r)/w+(r) at jkrj� 1 and the scattering

phases (see Eq. (8.17)). The result is (Shytov, Katsnelson & Levitov, 2007b)

exp 2idm kð Þ½ � ¼ exp pi mj j½ � zþ exp 2iw kð Þ½ �
1þ z
 exp 2iw kð Þ½ � ; ð8:26Þ

where

z ¼ exp pgð Þ
Z

G 1þ 2igð Þ
G 1 2igð Þ

G 1 igþ ibð Þ
G 1þ igþ ibð Þ ð8:27Þ

and

w kð Þ ¼ g ln 2kr0ð Þ þ arctan
1þ Z

1 Z

� �

; ð8:28Þ

with

Z ¼ b g

bþ g

s

: ð8:29Þ

The factor exp [2iw (k)] oscillates rapidly at kr0� 1. This conclusion does not

depend on a specific choice of the boundary condition (8.25); for a generic

boundary condition the first (logarithmic) term in Eq. (8.28) will be the same.

The expressions (8.26) (8.29) have a very interesting property: they describe

the existence of quasilocalized states (Shytov, Katsnelson & Levitov, 2007b).

For localized states the wave function is described by a single real exponent,

exp( kr) (k> 0), at r!1, which means the absence of a scattering wave.

Considering dm(k) as a function of the complex variable k and taking into

account the condition (8.17), one can write the equation for the bound state as

exp 2idm kð Þ½ � ¼ 0 ð8:30Þ

for k< 0 and

exp 2idm kð Þ½ � ¼ 0 ð8:31Þ
for k> 0. To be specific, let us consider the first case, E< 0. Then, Eq. (8.30)

is equivalent to

exp 2iw kð Þ½ � ¼ z; ð8:32Þ
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which, taking into account Eq. (8.28), reads

ln 2knr0ð Þ ¼ i

2g
ln z

1

2g
ln arctan

1þ Z

1 Z

� �

pn

g
; ð8:33Þ

where n is an integer. For small g, that is, near the threshold jbj ffi jmj,
Eq. (8.33) describes the series of quasilocalized states corresponding to positive

n (for negative n, kr0� 1, which contradicts our choice of the parameter r0 as a

small cut-off). The k values have an imaginary part, due the term [i/(2g)] ln jzj
in Eq. (8.33). Keeping in mind that

ln G 1þ ibð Þj j ¼ 1

2
ln G 1þ ibð ÞG 1 ibð Þ½ � ¼ 1

2
ln

pb

sinh pbð Þ

� �

; ð8:34Þ

one finds

kn ¼ c exp
pn

g
il

� �

; ð8:35Þ

4
(a)

(b)

Supercritical b < –1/2

Supercritical b > –1/2

Subcritical –1/2 < b < 1/2

–1.2

1.2

–0.8

0.8

0.4

3

2

1

0

–1

–2

–3

–4

8

6

4

2

0
–1

10–5

S
ca

tt
e
ri

n
g
 p

h
a
se

 d
0
/p

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 10

10–4 10–3 10–2

Wavenumber kr0

Potential strength b

Tr
a
n
sp

o
rt

 c
ro

ss
-s

e
ct

io
n
 s

tr

kr0=10–5

kr0=10–3

kr0=0.1

Fig. 8.1. (a) The scattering phase for m ¼ 1
2
at negative energy E ¼ �hvk<0.

The kinks correspond to quasilocalized states trapped by the impurity
potential for supercritical b. (b) The transport cross-section as a function
of the potential strength; the quasilocalized states are seen as Fano resonances.
(Reproduced with permission from Shytov, Katsnelson & Levitov, 2007b.)
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where

l ¼ p

1 exp 2pbð Þ ð8:36Þ

and the prefactor c is of the order of r 1
0 . The corresponding energies

En ¼ hvkn have an imaginary part, due to the factor l; however, it is small:

ImEn

ReEn

¼ p

exp 2pbð Þ 1
: ð8:37Þ

Theminimal valueofb corresponds to bj j ¼ 1
2
, andtheright-handsideofEq.(8.37)

is about 0.14. This means that the imaginary part is relatively small and the

resonances are narrow. The resonances correspond to jumps in the scattering

phases and sharp anomalies in the transport scattering cross-section (6.26). The

corresponding numerical data are shown in Fig. 8.1 (Shytov, Katsnelson &

Levitov, 2007b). One can see typical Fano resonances (see Section 6.7), as one

would expect for quasilocalized states within a continuum spectrum.

8.2 Relativistic collapse for supercritical charges

Our consideration up to now has been rather formal. To understand the

physical meaning of the quasilocalized states considered in the previous

section we will use a simple semiclassical consideration (Shytov, Katsnelson &

Levitov, 2007b; Shytov et al., 2009). It turns out that these states are related

to the phenomenon of relativistic collapse, or fall of electrons into the centre

for superheavy nuclei (Pomeranchuk & Smorodinsky, 1945). This provides us

with a new interesting connection between the physics of graphene and high-

energy physics.

To gain some insight into the problem let us start with a hand-waving

derivation of the size of atoms using the Heisenberg uncertainty principle. If

an electron is confined within a spatial region of radius R its typical

momentum is of the order of

p � h

R
: ð8:38Þ

For nonrelativistic particles with mass m, the kinetic energy is p2/(2m), and

the total energy of the electron, taking into account its attraction to the

nucleus, can be estimated as

E Rð Þ � h2

2mR2

Ze2

R
ð8:39Þ
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with a minimum at

R0 ¼
h2

mZe2
ð8:40Þ

which is nothing other than the Bohr radius. For a relativistic particle we

have, instead of Eq. (8.39),

E Rð Þ � hc

R

� �2

þ mc2ð Þ2
s

Ze2

R
: ð8:41Þ

The minimum condition

@E

@R

� �

R R0

¼ 0

gives us the equation

1þ mcR0

h

� �2

¼ hc

Ze2

� �2

; ð8:42Þ

which has a solution only for

Z < Zc ¼
hc

e2
¼ 1

a
� 137: ð8:43Þ

For Z>Zc, the energy (8.41) decays monotonically with R, decreasing from

E1¼mc2 at R!1 to E¼ 1 at R¼ 0. This means that the electron falls

into the centre.

Speaking more formally, the Dirac equation for a point charge Z>Zc is

ill-defined and has no unique solutions, without introducing some additional

boundary conditions at small R, similarly to what we did in the previous

section. The wave function has infinitely many oscillations at r! 0 (cf.

Eqs. (8.22) and (8.24)), and some of the solutions for the energies (Berestetskii,

Lifshitz & Pitaevskii, 1971; Bjorken & Drell, 1964)

En; j ¼
mc2

1þ Zað Þ2

n jj j þ j2 Zað Þ
p

2
� �2

s ð8:44Þ

(n¼ 0, 1, 2, . . ., j¼�1, �2, . . .) become non-real, which means that the

Hamiltonian is not a proper Hermitian operator.

If we draw the positions of the energy levels as a function of z¼Za one can

see that at z¼ 1 the energy of the 1s state goes to zero, and the gap between

192 The Coulomb problem

              

       



electron and positron states disappears. In this situation one could expect

vacuum reconstruction, with the creation of electron positron pairs from

vacuum (Pomeranchuk & Smorodinsky, 1945; Zel’dovich & Popov, 1972;

Greiner, Mueller & Rafelski, 1985; Grib, Mamaev & Mostepanenko, 1994);

cf. our discussion of the Klein paradox in Section 4.1. The scheme of the

energy levels (Zel’dovich & Popov, 1972) is shown in Fig. 8.2.

Taking into account the finite size of atomic nuclei R¼Rn and assuming a

parabolic potential at r<Rn, as should be the case for a uniformly charged

sphere, one finds a larger value for the critical radius, Zc� 170 (Zel’dovich &

Popov, 1972), which is still far beyond the charge of the heaviest known

element. One can hope to observe this very interesting effect in collisions of

two heavy ions with Z<Zc, but in this case the critical value of total Z is even

larger. Therefore, this effect of ‘relativistic collapse’ of superheavy atoms has

not been observed, thus far.

In the case of graphene, we have the Fermi velocity v� c/300, instead of

the velocity of light, and the critical value Zc should be of the order of one,

which makes this effect observable (Shytov, Katsnelson & Levitov, 2007a,

2007b; Pereira, Nilsson & Castro Neto, 2007). Actually, some manifestations

have been discussed already in the previous section, such as the Fano

resonances in the transport scattering cross-section shown in Fig. 8.1 (Shytov,

Katsnelson & Levitov, 2007b). Strong oscillations of the local density

of states for the supercritically charged impurities observable in principle

by STM could be considered another manifestation (Shytov, Katsnelson &

Levitov, 2007a).
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Fig. 8.2. (a) Energy levels of superheavy atoms (in units of mc2) obtained
from the Dirac equation for the Coulomb potential as a function of the
coupling constant z¼Za. (b) The same, but taking into account the
effects of the finite size of atomic nuclei. The critical value of Z is shifted
from Zc¼ a 1 � 137 to Zc � 170 (Zel’dovich & Popov, 1972).
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Strictly speaking, the massless case m¼ 0 relevant for graphene deserves

special consideration. We saw in the previous section that relatively narrow

resonances occur in the continuum spectrum. To understand better their

origin it is instructive to consider the problem semiclassically.

For ultrarelativistic particles with the Hamiltonian

H ~p; rð Þ ¼ v ~pj j Ze2

r
ð8:45Þ

one can introduce the radial momentum pr and angular momentum pj¼M,

which is an integral of motion since the Hamiltonian (8.45) does not depend

on j. One can find from the energy-conservation condition H¼E that

p2r ¼
1

v2
Eþ Ze2

r

� �2
M2

r2
ð8:46Þ

and the classically allowed regions are determined by the condition p2r > 0.

If M is large enough,

M > Mc ¼
Ze2

v
; ð8:47Þ

the particle can propagate from r¼ 0 to r¼1. At M<Mc the situation is

different, and we have two classically allowed regions, 0< r< r1 and r> r2,

separated by a potential barrier, where

r1;2 ¼
Ze2 �Mv

Ej j : ð8:48Þ

If we were to neglect the tunnelling through the classically forbidden region,

we could use the semiclassical quantization condition (Bohr Sommerfeld

condition) for the inner well:

ð

r1

0

dr pr ¼ ph nþ mð Þ; ð8:49Þ

where n¼ 0, 1, 2, . . . and m is a factor of the order of unity, cf. Section 2.4

(Landau & Lifshitz, 1977).

One can see, however, that the integral on the left-hand side of Eq. (8.49)

is logarithmically divergent at the lower limits, and a cut-off at r¼ r0� r1
should be introduced. This divergence reflects the fall towards the centre

discussed above. After that we will find from the corrected version of

Eq. (8.49)
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En � C
hv

r0
exp

phn

M2
c M2

p

" #

ð8:50Þ

with a factor C� 1, in very good agreement with the positions of quasi-

localized levels found from the exact solution, Eq. (8.35).

Owing to the Klein tunnelling through the classically forbidden region, the

lifetime in the inner well is finite, which leads to the appearance of the

imaginary part of the energy,

Gn

Enj j
� exp

2S

h

� �

; ð8:51Þ

S ¼
ð

r2

r1

dr pr rð Þj j ð8:52Þ

(Landau & Lifshitz, 1977). The explicit calculation gives us the answer

S ¼ p Mc M2
c M2

q

� �

: ð8:53Þ

At the threshold,M¼Mc, this gives us a result that differs from the exact one

(8.37) only by the replacement

1

exp 2pbð Þ 1
! exp 2pbð Þ: ð8:54Þ

The resonances are narrow, and the quasilocalized states are long-lived,

because of the numerical smallness exp( p)� 0.04 an interesting example

of a small numerical parameter for a coupling constant of the order of one!

8.3 Nonlinear screening of charge impurities

Up to now, we have not taken into account electron electron interactions.

However, they are essential in our problem. The Coulomb potential (8.1)

induces some redistribution of the electron density, nind ~rð Þ, which will create

an additional potential

Vind ~rð Þ ¼ e2

eext

ð

d~r 0
nind ~r 0ð Þ
~r ~r 0j j þ Vxc ~rð Þ; ð8:55Þ

where the first term is the Hartree potential and the second one is the exchange

correlation potential. In the simplest approximation the latter can be neglected,

and we restrict ourselves to this approximation. The density-functional
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approach taking into account Vxc for the case of massless Dirac fermions

was developed by Polini et al. (2008) and Rossi & Das Sarma (2008) (see also

Brey & Fertig, 2009; Fogler, 2009; Gibertini et al., 2010).

We will focus on the case of undoped graphene (chemical potential m¼ 0).

In this situation the radial dependence of nind(r
0) can be written just from

dimensional analysis. There is no way to construct any length from the

parameters of the potential (Ze2) and of the electron spectrum (the Fermi

velocity v); the only relevant characteristic, b, given in (8.2), is dimensionless.

At the same time, nind(r) has a dimensionality of inverse length squared. The

most general expression is

nind rð Þ ¼ A bð Þd ~rð Þ þ B bð Þ
r2

; ð8:56Þ

with the dimensionless A and B. The physical roles of these two terms are

dramatically different. The term proportional to A(b) is nothing other than

the renormalization of the point charge:

Z

eext
! Z

eext
þ A bð Þ: ð8:57Þ

At the same time, phenomenologically, the answer should be Ze2/e, where e

is the total dielectric constant (7.89), thus

A bð Þ ¼ Z
1

e

1

eext

� �

: ð8:58Þ

Therefore, the first term on the right-hand side of Eq. (8.56) describes nothing

but linear screening, that is, the renormalization of the dielectric constant.

The second term gives a logarithmically divergent contribution to the total

charge:

Qind ¼
ð

d~r 0 nind ~r 0ð Þ � 2pB bð Þln rmax

rmin

� �

; ð8:59Þ

where rmax and rmin are the upper and lower limits of the integration. The

obvious choice for rmin is the lattice constant a, since at such small distances

the Dirac model is not applicable. As for rmax, it is of the order of the sample

length L. The appearance of such contributions proportional to large ln(L/a)

should have very important consequences.

Let us consider first the case of small Z. The linear-response problem was

considered in Chapter 7, and no logarithms appeared. Owing to electron hole

symmetry, Qind (Z) should be an odd function:

Qind Zð Þ ¼ Qind Zð Þ; ð8:60Þ
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which means that, at small Z, B can be represented as

B Zð Þ ¼ B3Z
3 þ B5Z

5 þ � � � : ð8:61Þ

Straightforward calculations show that B3¼ 0 (Ostrovsky, Gornyi & Mirlin,

2006; Biswas, Sachdev & Son, 2007). Later in this section we will show in a

nonperturbative way that B¼ 0 at Z<Zc (Shytov, Katsnelson & Levitov,

2007a).

To consider the opposite limit of large Z one can use the Thomas Fermi

approximation (Katsnelson, 2006c). For the case of atoms one can prove that

it is asymptotically exact at Z!1 (Lieb, 1981). Within this approximation

(Landau & Lifshitz, 1977; Lieb, 1981; Vonsovsky & Katsnelson, 1989) the

effect of the total potential

V ~rð Þ ¼ Ze2

r
þ Vind ~rð Þ ð8:62Þ

on the electron density dependent on the chemical potential, n(m), is purely

local,

nind ~rð Þ ¼ n m V rð Þ½ � n mð Þ; ð8:63Þ

and the term Vxc in Eq. (8.55) can be neglected. The linearized version of this

approximation for the doped case was discussed in Section 7.7.

As a result,

Vind ~rð Þ ¼ e2

eext

ð

d~r 0
n m V ~r 0ð Þ½ � n mð Þ

~r ~r 0j j : ð8:64Þ

For the case of graphene,

n mð Þ ¼
ð

m

0

dEN Eð Þ ¼ m mj j
ph2v2

ð8:65Þ

(see Eq. (1.72)).

Let us start with the undoped case (m¼ 0). Then, on substituting Eqs. (8.62)

and (8.65) into Eq. (8.64) and integrating over angles (it is obvious that V ~rð Þ
and nind ~rð Þ depend only on ~rj j ¼ r), one finds the integral equation (Katsnelson,

2006c)

F rð Þ ¼ Z
2q

p

ð

1

0

dr 0

r 0
r

rþ r 0
K

2 rr 0
p

rþ r 0

 !

F r 0ð Þ F r 0ð Þj j; ð8:66Þ
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where F is related to V by the expression

V ~rð Þ ¼ e2

eextr
F rð Þ; ð8:67Þ

K(m) is the elliptic integral (7.65) and

q ¼ 2
e2

eexthv

� �2

: ð8:68Þ

We will see below that, actually, the integral on the right-hand side of

Eq. (8.66) is divergent at r¼ 0; the reason is the inapplicability of the Dirac

model at r� a. Therefore, we need to introduce a cut-off at r 0� a, as was

discussed above. The exact value of a is not relevant, given the logarithmic

accuracy.

To proceed further, we make a replacement of variables in Eq. (8.66),

r 0¼ r exp (t), and introduce the notation ~F ln rð Þ ¼ F rð Þ. As a result, Eq. (8.66)

takes the form

~F xð Þ ¼ Z q

ð

x

ln a

dt ~F tð Þ ~F tð Þ
�

�

�

� q

ð

1

1

dt ~F xþ tð Þ ~F xþ tð Þ
�

�

�

�j tð Þ; ð8:69Þ

where

j tð Þ ¼ 2

p

K 1=cosh
t

2

� �� �

1þ exp t
y tð Þ; ð8:70Þ

with y(x> 0)¼ 1, y(x< 0)¼ 0. The function j(t) decays exponentially at t!
�1 and has a logarithmic divergence at t¼ 0 (see Fig. 8.3). For large x, the

last term in Eq. (8.69) can be neglected:

~F xð Þ ¼ Z q

ð

x

ln a

dt ~F tð Þ ~F tð Þ
�

�

�

�: ð8:71Þ

This integral equation is equivalent to the differential one:

d ~F xð Þ
dx

¼ q ~F xð Þ ~F xð Þ
�

�

�

�; ð8:72Þ

with the initial condition ~F 0ð Þ ¼ Z. The solution is

F rð Þ ¼ Z

1þ Zj jq ln r
a

� � ; ð8:73Þ
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which corresponds to a very strong (logarithmic) screening of the effective

charge at r� a:

Zeff rð Þ ¼ ZþQind �
ZeffðrÞ
q ln

r
a

� � : ð8:74Þ

If we were to expand Eq. (8.73) formally inZ, the leading term inQindwould be

Qind � Z Zj jq ln rmax

rmin

� �

ð8:75Þ

which does not have the form (8.61) (but, of course, satisfies the condition

(8.60)). However, as we will see, the expression (8.73) is correct only for

jZj� 1.

If we took the expression (8.73) literally, it would lead to the conclusion

that any charge is completely screened by the vacuum of two-dimensional

massless Dirac electrons (Katsnelson, 2006c). The situation is reminiscent of

‘charge nullification’ in quantum electrodynamics (Landau & Pomeranchuk,

1955; Landau, Abrikosov & Khalatnikov, 1956; Migdal, 1977), which was

considered (especially by the Landau school) as a fundamental difficulty of

quantum field theory in general. Actually, complete nullification occurs

neither in quantum electrodynamics nor in graphene. We will see that in the

latter case the screening is stopped at the value Z¼Zc (Shytov, Katsnelson &

Levitov, 2007a).

The simplest way to demonstrate this is to use arguments based on the Friedel

sum rule (Friedel, 1952; Vonsovsky & Katsnelson, 1989); its generalization to
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Fig. 8.3. A graph of the function j(t) in (8.70).
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the case of the Dirac equation has been proposed by Lin (2005, 2006).

According to the sum rule, the total induced charge is related to the phase

scattering at the Fermi surface,

Qint ¼
4

p

X

m

dmðkFÞ; ð8:76Þ

where the minus sign corresponds to that in Eq. (8.5) and we introduce the

factor of 4 (valley degeneracy multiplied by spin degeneracy) keeping in mind

applications to graphene. We are interested in the limit kF! 0, which, how-

ever, requires some careful treatment for the supercritical charges (jbj> bc),

due to the term ln (2kr0) in Eq. (8.28). This is, actually, the same logarithmic

divergence as in Eq. (8.59), so we will see immediately that the B term in

Eq. (8.56) arises naturally at jbj> bc (but is equal to zero at jbj< bc, as has

already been mentioned). For the r-dependent term one can estimate, with

logarithmic accuracy,

QintðrÞ �
4

p

X

m

dm k � 1

r

� �

¼ 4

p

X

m

gm ln
r
a

� �

; ð8:77Þ

where the sum is taken over all jmj< jbj.
Thus, we have the following expression for the logarithmically dependent

term in Eq. (8.56):

B bð Þ ¼ 2

p2
b
X

mj j< bj j
b2 m2

q

: ð8:78Þ

To proceed further one can use the renormalization group (RG) method, in

its simplest form of the ‘poor man’s scaling’ (Anderson, 1970). Let us find the

dimensionless charge b self-consistently:

b rð Þ ¼ e2

eext þ hv
ZþQind rð Þð Þ ¼ b0 Zþ 2pB ln

r
a

� �� �

; ð8:79Þ

where b0 is the bare value (8.2). The differential RG equation for the effective

coupling constant reads

db

d ln r
¼ 2pb0BðbÞ ¼

4e2b

peexthv

X

mj j< bj j
b2 m2

q

: ð8:80Þ

Equation (8.80) describes the flow of effective charge from its initial value

b(r� a)¼ b0 to a smaller screened value. The flow stops, however, when jb (r)j
reaches the critical value bc ¼ 1

2
since B(jbj< bc)¼ 0. It happens at a finite

screening radius r* determined by the condition
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1

2p b0j j

ð

bj j

bc

d bj j
B bð Þ ¼ ln

r

a

� �

: ð8:81Þ

For the case of 1
2
< b0j j< 3

2
, for which only one term (with mj j ¼ 1

2
) contrib-

utes to B(b), the integration can be carried out explicitly:

r
 ¼ a exp
peexthv

4e2
cosh 1 2b0ð Þ

� �

: ð8:82Þ

This means that the supercritical charge in graphene is surrounded by a cloud

of electron hole pairs (created from the vacuum) of finite radius r*. For

distances r> r* the supercritical charge looks like the critical one. In our

simple theory this critical charge corresponds to jbcj ¼ 1
2
; however, one should

keep in mind that a more accurate consideration of electron electron inter-

actions can renormalize this value. Note also that taking into account the

A term (8.58) will lead to the replacement eext! e in Eqs. (8.80) and (8.82).

Anyway, it is natural to expect that jbcj is of the order of one. Thus, due to
the condition v� c, the rich and interesting physics of the supercritical charge

and vacuum reconstruction, which is hardly reachable for superheavy nuclei,

can play an important role in graphene.

To finish this section, let us establish the relations between the Thomas

Fermi approximation and our RG treatment. If we assume that jZj� 1 and

jbj is much larger than the critical value, the sum in Eq. (8.78) can be replaced

by the integral

X

mj j< bj j
b2 m2

q

�
ð

bj j

bj j

dm b2 m2

q

¼ pb2

2
; ð8:83Þ

and Eq. (8.80) coincides with Eq. (8.72), with the solution (8.73). Thus, the

Thomas Fermi approximation works at Z!1, as one would naturally

expect.

8.4 Inter-electron Coulomb interaction and renormalization

of the Fermi velocity

As discussed in Chapter 7, electron electron interaction in graphene is not

weak, the effective coupling constant being of the order of one. This makes

the problem of a many-body description of graphene very complicated. Also,

experimental evidence of many-body effects in graphene (except in the

8.4 Inter-electron Coulomb interaction 201

              

       



quantum Hall regime) still remains very poor. For these two reasons, it seems

to be a bit early to discuss in detail the correlation effects in graphene.

However, one of the predictions, namely, a concentration-dependent renor-

malization of the Fermi velocity (González, Guinea & Vozmediano, 1994) is

based on relatively simple Hartee Fock calculations and should be reliable,

at least, qualitatively. Very recently, this effect was confirmed experimentally

(Elias et al., 2011). It demonstrates the importance of the long-range charac-

ter of inter-electron Coulomb interactions and, therefore, will be considered

in this chapter.

The Hamiltonian of the Coulomb interaction reads

ĤC ¼
e2

2

X

a;b

ðð

d~r d~r 0
^cþa ~rð Þĉa ~rð Þĉþb ~r 0ð Þĉb ~r 0ð Þ

~r ~r 0j j ; ð8:84Þ

where ĉa ~rð Þ is the electron annihilation operator at the point~r, a is an intrinsic

quantum number (e.g., a set of spin-projection, sublattice and valley labels).

The Hartree Fock approximation corresponds to the replacement

ĉþ1 ĉ2ĉ
þ
3 ĉ4 ! ĉþ1 ĉ2

ED

ĉþ3 ĉ4 þ ĉþ1 ĉ4

ED

ĉ2ĉ
þ
3 ¼ r21ĉ

þ
3 ĉ4 þ r41ĉ2ĉ

þ
3 ; ð8:85Þ

which means a consideration of electron electron interactions at the mean-

field level (Landau & Lifshitz, 1977; Vonsovsky & Katsnelson, 1989). The

coupling with
X

a

ĉþa ~rð Þĉa ~rð Þ
D E

¼ n ~rð Þ ð8:86Þ

corresponds to Hartree (electrostatic) terms and, within the model of a

homogeneous electron gas, is exactly compensated for by the interactions

with ionic charge density, due to the electroneutrality of the system. The Fock

contribution survives:

ĤF ¼ e2
X

a;b

ð

d~r d~r 0
ĉþa ~rð Þĉb ~r 0ð Þ
D E

ĉþb ~r 0ð Þĉa ~rð Þ
~r ~r 0j j : ð8:87Þ

Owing to the translational invariance of the system,

ĉþa ~rð Þĉb ~r 0ð Þ
D E

¼
X

~k

rba
~k
� �

exp i~k ~r ~r 0ð Þ
h i

; ð8:88Þ

where

rba
~k
� �

¼ ĉ
þ
~kaĉ~kb

D E

ð8:89Þ
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(cf. Chapter 7, where we used this single-particle density matrix many times).

If we apply this assumption to graphene, this means that we neglect inter-

valley Coulomb interaction. The corresponding terms contain ‘Umklapp

processes’ with r̂ ~k; ~k�~g
� �

, where ~g ¼ ~K ~K 0 is the vector connecting the

valleys. This approximation will be discussed later.

On substituting Eq. (8.88) into Eq. (8.87) we will have an additional term in

the single-electron Hamiltonian,

ĤF ¼
X

~k

X

a;w

^cþa ~k
� �

hab ~k
� �

ĉb
~k
� �

; ð8:90Þ

where

hab ~k
� �

¼ 2pe2
X

~k
0

rab
~k
0

� �

~k ~k0
�

�

�

�

�

�

: ð8:91Þ

If we consider the electron electron interaction effects by applying a perturb-

ation theory, the corrections to the energies of electrons and holes are

nothing other than the matrix elements of ĥ ~k
� �

in the corresponding basis.

The explicit calculation for the undoped case (which is similar to that in

Sections 7.2 and 7.6) gives us the following result:

dEe;h
~k
� �

¼ �
X

~k
0

2pe2

~k ~k0
�

�

�

�

�

�

1

2
1�

~k~k
0

kk0

 !

: ð8:92Þ

The integral in Eq. (8.92) is logarithmically divergent at the upper limit and

has to be cut at kc� 1/a, due to the inapplicability of the Dirac approxima-

tion. It contains the term �h dvF kð Þk, where

dvF kð Þ ¼ e2

4h
ln

kc

k

� �

; ð8:93Þ

which is logarithmically divergent at k! 0. This means that, strictly speaking,

the Dirac cones near the neutrality point are not exactly cones.

For the case of doped graphene, the divergence at k! 0 is cut at k� kF,

which results in a logarithmic dependence of the Fermi velocity on the

electron concentration:

dvF �
e2

4h
ln

1

kFa

� �

: ð8:94Þ
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If we take into account the screening of the Coulomb interaction by the

environment plus virtual electron hole transitions, the expression (8.94) is

replaced by

dvF �
e2

4he
ln

1

kFa

� �

; ð8:95Þ

with e given by Eq. (7.89). This seems to be in agreement with the experi-

mental data published by Elias et al. (2011).

Note that, if we took into account the intervalley Coulomb interaction, the

Fourier component 1= ~k ~k
0

�

�

�

�

�

� in Eq. (8.92) would be replaced by a constant,

1

~k ~k0 þ~g
�

�

�

�

�

�

� 1

g
:

This interaction does not lead to any singularities and, therefore, can be

neglected.

The situation becomes more complicated and interesting if we take into

account dynamical screening of the Coulomb interaction (see Eqs. (7.81),

(7.82) and (7.88)). As was shown by González, Guinea & Vozmediano

(1999), this leads to the damping of electron states proportional to jEj, in
contrast with the typical Fermi-liquid E2 behaviour. This means that gra-

phene in the vicinity of the neutrality point should be a marginal Fermi liquid,

with ill-defined quasiparticles. Currently, it is not clear how this result will be

changed on going beyond the perturbation theory.

There is also a huge theoretical literature discussing various types of

instabilities in single-layer and bilayer graphene, due to electron electron

interaction (exciton condensation, spin liquid, nematic order, charge-density

waves, etc.). The issue is extremely interesting, but so controversial that even

a selection of references would be too subjective. Let us hope that the situation

will be clarified in the very near future.
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9

Crystal lattice dynamics, structure

and thermodynamics

9.1 Phonon spectra of graphene

Phonon spectra of two-dimensional and quasi-two-dimensional crystals have

some peculiar features that were first analysed by Lifshitz (1952) (see also

Belenkii, Salaev & Suleimanov, 1988; Kosevich, 1999). To explain them we

first recall a general description of the phonon spectra in crystals (Kosevich,

1999; Katsnelson & Trefilov, 2002).

Let the coordinates of the nuclei be

~Rnj ¼ ~R
0ð Þ
nj þ~unj; ð9:1Þ

where ~R
0ð Þ
nj

n o

form a crystal lattice, n labels elementary cells (or sites of the

corresponding Bravais lattice), j¼ 1, 2, . . ., n labels the atoms within elementary

cell (or sublattices) and~unj are displacements. Further, we will use the notation

~R
0ð Þ
nj ¼~rn þ~rj; ð9:2Þ

where~rn are translation vectors and ~rj are basis vectors ð~r1 � 0Þ.
Themain assumption of the standard theory of crystal lattices is the smallness

of average atomic displacements in comparison with the interatomic distance d:

~u 2
nj

D E

� d 2: ð9:3Þ

According to Eq. (9.3) one can expand the potential energy V ~Rnj

n o� �

in

terms of atomic displacements and take into account only the lowest, second-

order, term (the linear term obviously vanishes due to mechanical equilibrium

conditions):

V ~Rnj

n o� �

¼ V ~R
0ð Þ
nj

n o� �

þ 1

2

X

nn 0
ij
ab

A
ab
ni;n 0ju

a
niu

b
n 0j; ð9:4Þ

205

              

       



where

A
ab
ni;n 0j ¼

q
2V

quaniqu
b
n 0j

 !

~u 0

ð9:5Þ

is the force-constant matrix. Equation (9.4) defines the harmonic approximation.

The classical equations of motion for the potential energy (9.4) read

Mi

d 2u
að Þ
ni

dt2
¼

X

n0jb

A
ab
ni;n 0ju

b
n0j: ð9:6Þ

By looking for solutions of the form uani tð Þ � exp iotð Þ and using translational

symmetry one can prove that the square eigenfrequencies of the problem,

o2 ¼ o2
x ~qð Þ, are eigenvalues of the dynamical matrix

D
ab
ij ~qð Þ ¼

X

n

A
ab
0i;nj

MiMj

p exp i~q~rnð Þ: ð9:7Þ

Here ~q is the phonon wave vector running over the Brillouin zone and x¼ 1,

2, . . ., 3n is the phonon branch label.

After quantization of the classical problem one can prove that in the

harmonic approximation the Hamiltonian of the system is

Ĥ0 ¼
X

l

hol b̂
þ
l b̂l þ

1

2

� �

; ð9:8Þ

where l ¼ ~q; xð Þ are phonon quantum numbers, b̂þl and b̂l are canonical Bose

creation and annihilation operators and the atomic displacement operator is

expressed in terms of b̂þl and b̂l as

~̂unj ¼
X

l

h

2N0Mjol

s

b̂l þ b̂
þ
l

� �

~ej lð Þexp i~q~rnð Þ: ð9:9Þ

Here N0 is the number of elementary cells, lð Þ � ~q; xð Þ and ~ej lð Þ are
polarization vectors, that is, unit eigenvectors of the dynamical matrix.

There are important restrictions on the force-constant matrix, due to the

translational invariance of the problem. If we were to move all nuclei of the

crystal by the same displacement vector ~u no force would act on any atom.

This means, due to Eq. (9.6), that

X

nj

A
ab
0i;nj ¼ 0: ð9:10Þ
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It follows from the condition (9.10) that in three-dimensional space there are

three acoustic modes, with o2
x ~q! 0ð Þ ! 0 (x¼ 1, 2, 3) and 3(n 1) optical

modes, with finite o2
x ~q! 0ð Þ. The acoustic modes for small ~q correspond to

coherent displacements of all atoms in the elementary cell by the same vector

~uj � ~u, whereas optical modes at ~q ¼ 0 correspond to the motion of atoms

within the elementary cells with the fixed inertia centre:

X

j

Mj~uj ~q ¼ 0ð Þ ¼ 0: ð9:11Þ

Keeping in mind graphene, we will assume further that Mj¼M is the mass

of the carbon atom. Owing to mirror symmetry in the graphene plane, it is

obvious that

Â
xz ¼ Â

yz ¼ 0 ð9:12Þ

and, thus, the modes with polarization along the z-direction are rigorously

separated, within the harmonic approximation, from the modes polarized in

the graphene xy-plane. Also, taking into account that the two sublattices

A and B are equivalent, one can see that

D
ab
11 ¼ D

ab
22 ð9:13Þ

and, due to Eqs. (9.7) and (9.10),

D
ab
12 ~q ¼ 0ð Þ þD

ab
11 ~q ¼ 0ð Þ ¼ 0: ð9:14Þ

Therefore, there are six phonon branches in graphene, namely the following.

(1) The acoustic flexural mode ZA ~u jjOzð Þ with the frequencies

o2
ZA ~qð Þ ¼ D zz

11 ~qð Þ þD zz
12 ~qð Þ: ð9:15Þ

(2) The optical flexural mode ZO ~u kOzð Þ with the frequencies

o2
ZO ~qð Þ ¼ Dzz

11 ~qð Þ Dzz
12 ~qð Þ: ð9:16Þ

(3), (4) Two acoustic in-plane modes, with o2 ~qð Þ equal to eigenvalues of the

2	 2 matrix

D
ab
11 ~qð Þ þD

ab
12 ~qð Þ a; b ¼ x; yð Þ:

(5), (6) Two optical in-plane modes, with o2 ~qð Þ equal to eigenvalues of the

2	 2 matrix

D
ab
11 ~qð Þ D

ab
12 ~qð Þ a; b ¼ x; yð Þ:
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If the two-dimensional wave vector ~q lies in symmetric directions, branches

(3) (6) can be divided into longitudinal ~ek~qð Þ and transverse ~e?~qð Þ modes;

for a generic ~q this classification is not possible.

Because of the conditions (9.14) one can assume that for acoustic modes

o2� q2 at ~q! 0 and this is, in general, true. However, for the ZA mode q2

terms also disappear, and o2
ZA qð Þ � q4 (Lifshitz, 1952). This follows from the

rotational invariance of the system. Indeed, instead of uniform translation

~un ¼ constant let us use uniform rotation

~unj ¼ d~j	 ~R
0ð Þ
nj ; ð9:17Þ

where d~j is the rotation angle. This should also not lead to the appearance

of any forces or torques acting on the atoms. If d~j lies in the xy-plane,~unjkOz

and, additionally to the conditions (9.10), we will have
X

nj

Azz
0i;njr

a
nr

b
n ¼ 0 ð9:18Þ

(a, b¼ x, y). It follows immediately from Eq. (9.18) and the definition of the

dynamical matrix in (9.7) that

q
2

qqa qqb
Dzz

11 ~qð Þ þDzz
12 ~qð Þ

	 
�

�

~q 0
¼ 0 ð9:19Þ

and, thus, the expansion of the right-hand side of Eq. (9.15) starts with terms

of the order of q4; therefore,

oZA qð Þ � q2 ð9:20Þ
at ~q! 0. In the next section we will derive this result by means of

phenomenological elasticity theory.

There is no way, up to now, to measure phonon dispersion in graphene

experimentally since the number of atoms in graphene flakes is insufficient

for inelastic neutron-scattering experiments. It can be calculated using the

density-functional method (Mounet &Marzari, 2005) or some semi-empirical

interatomic potential. The results are quite similar. Later in this chapter we

will frequently discuss the results of atomistic simulations obtained using the

so-called long-range carbon-bond order potential (LCBOPII) (Los & Fasolino,

2003; Los et al., 2005). Therefore we show in Fig. 9.1 the phonon spectra

calculated within the same model (Karssemeijer & Fasolino, 2011). One can

clearly see the six branches of the phonons listed above.

Let us consider now the case of finite temperatures. In the harmonic

approximation, the mean-square atomic displacement is (Kosevich, 1999;

Katsnelson & Trefilov, 2002)
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uanju
b
nj

D E

¼
X

l

h

2N0Mjol

eanj

� �

e
b
nj

� �

coth
hol

2T

� �

: ð9:21Þ

For in-plane deformations (a¼ b¼ x or y) at any finite temperature the inte-

gral (9.21) is logarithmically divergent due to the contribution of acoustic

branches with o� q at ~q! 0. This divergence is cut at minimal qmin�L 1

(L is the sample size), thus

x2nj

D E

¼ y2nj

D E

� T

2pMc2s
ln

L

d

� �

; ð9:22Þ

where cs is the average sound velocity (Peierls, 1934, 1935; Landau, 1937;

Landau & Lifshitz, 1980). This led Landau and Peierls to the conclusion that

two-dimensional crystals cannot exist. Strictly speaking, this means just the

inapplicability of the harmonic approximation, due to violation of the condi-

tion (9.3). However, a more rigorous treatment does confirm this conclusion

(Mermin, 1968), as a partial case of the Mermin Wagner theorem (Mermin &

Wagner, 1966; Ruelle, 1999). This means that the definition of graphene as

a ‘two-dimensional crystal’ requires a detailed and careful discussion, which

is one of the main aims of this chapter.

For a¼ z, the situation is even worse, due to the much stronger divergence

of ZA phonons, Eq. (9.20). One can see from Eq. (9.21) that
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Fig. 9.1. Phonon spectra of graphene. (Reproduced with permission from
Karssemeijer and Fasolino, 2011.)
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h2nj

D E

� T
X

q

1

q4
� T

Eat

L2; ð9:23Þ

where Eat is of the order of the cohesive energy. Henceforth we will use the

notation h¼ uz, assuming that ~u ¼ ux; uyð Þ is a two-dimensional vector only.

Before going any further it is important to derive the key results (9.20) and

(9.23) from a different point of view.

9.2 The theory of elasticity for thin plates

In this section we present the general equations of the phenomenological

elasticity theory, with applications to thin plates (Landau & Lifshitz, 1970;

Timoshenko & Woinowsky-Krieger, 1959). This is a necessary preparatory

step before we can discuss the unique mechanical properties of graphene

(Booth et al., 2008; Lee et al., 2008). Also, it gives us a deeper insight into

the properties of flexural phonons.

Let us consider a D-dimensional (D = 2 or 3) deformed medium. The

particles which had original coordinates xa are transformed to the position

x 0a ¼ xa þ ua xb
� �� �

: ð9:24Þ

The metrics, that is, the distance between infinitesimally distant points, being

Pythagorean,

dl2 ¼ dxa dxa ð9:25Þ

(we assume a summation over repeated tensor indices) is changed to

dl 02 ¼ dx 0a dx
0
a ¼

qx 0a
qxb

qx 0a
qxg

dxb dxg ¼ dl2 þ 2uab dxa dxb; ð9:26Þ

where

uab ¼
1

2

qua

qxb
þ qub

qxa
þ qug

qxa

qug

qxb

� �

ð9:27Þ

is a so-called deformation tensor. It is assumed, in the elasticity theory, that

the free energy of a deformed medium is a functional of the deformation

tensor F¼F [uab].

By definition, the equilibrium state without external forces corresponds

to uab¼ 0.

There are two types of external forces resulting in the deformation. First,

there are bulk forces acting on each atom of the medium, such as gravitational
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and electric forces. Their volume density is assumed to be f
vð Þ

a ~rð Þ. Second, there
aremechanical forces, due to contact with various bodies; they act on the surface

only. The hydrostatic pressure P is an example; it leads to the total force

~f ¼
þ

d~SP; ð9:28Þ

where d~S is the (vector) element of the surface area. In a more general case in

which also shear forces are allowed Eq. (9.28) is generalized as

fa ¼
þ

dSb sab; ð9:29Þ

where sab is called the stress tensor. Using the Gauss theorem, Eq. (9.29) can

be represented as an integral over the volume

fa ¼
ð

dDx
qsab

qxb
: ð9:30Þ

Thus, the condition of local equilibrium can be written as

qsab

qxb
þ f vð Þ

a ¼ 0: ð9:31Þ

One can prove (Landau & Lifshitz, 1970) that, due to the condition of

absence of internal torques, the stress tensor is symmetric:

sab ¼ sba: ð9:32Þ
Interestingly, this condition is violated in ferromagnetic media, due to gyro-

magnetic effects (Vlasov & Ishmukhametov, 1964), but we will not consider

that case here.

The stress tensor creates deformations that are linear in the stress (Hooke’s

law). In the approximation of an isotropic elastic medium the relation is

determined by two Lamé constants, l and m:

sab ¼ ldabugg þ 2muab: ð9:33Þ
It is obvious that for small enough deformations juabj� 1 the renormaliza-

tion of the local volume is determined by ugg ¼ Tr û:

dV 0

dV
¼ det

qx 0a
qxb

� �

� 1þ ugg: ð9:34Þ

This component of the deformation tensor is called dilatation. The traceless

component,

u 0ab ¼ uab
1

D
dabugg; ð9:35Þ
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is called shear deformation. Hooke’s law (9.33) can be rewritten as

sab ¼ Bdabugg þ 2m uab
1

D
dabugg

� �

; ð9:36Þ

where

B ¼ lþ 2m

D
ð9:37Þ

is the bulk modulus and m has the meaning of a shear modulus of the system

under consideration.

On substituting Eq. (9.33) into Eq. (9.31) we find the equilibrium condi-

tions for the case f
vð Þ

a ¼ 0:

q

qxa
lugg
� �

þ 2
q

qxb
muab
� �

¼ 0: ð9:38Þ

Equation (9.38) corresponds to the extremum of the free energy

F ¼ 1

2

ð

dDx l uaað Þ2 þ 2muabuab

h i

: ð9:39Þ

Thermodynamic stability requires

B > 0; m > 0; ð9:40Þ

which is obvious if one considers pure dilatation and pure shear deformation.

The inversion of Eq. (9.36) gives us

uab ¼
1

D2B
dabsgg þ

1

2m
sab

1

D
dabsgg

� �

: ð9:41Þ

If we apply a uniaxial uniform stress (sxx¼ p and other components are equal

to zero) we can find from Eq. (9.41) that

uxx ¼
p

Y
; uyy ¼ nuxx; ð9:42Þ

where Y is called Young’s modulus and n is the Poisson ratio determining the

change of sizes in directions perpendicular to the stress. For D¼ 3 one has

Y ¼ 9Bm

3Bþ m
;

n ¼ 1

2

3B 2m

3Bþ m

ð9:43Þ

and, due to Eq. (9.40),

212 Crystal lattice dynamics

              

       



1< n<
1

2
: ð9:44Þ

For most solids n> 0, which means a constriction of the body in the perpen-

dicular direction. For D = 2

Y ¼ 4Bm

Bþ m
;

n ¼ B m

Bþ m
:

ð9:45Þ

Now, after recalling these basic definitions of elasticity theory, let us consider

the case of a thin plate (its thickness D is much smaller than the typical size, L,

in the x- and y-directions). We start with the case of small deformations, for

which the last, nonlinear, term in the definition (9.27) can be neglected. If we

assume that no forces act on the surfaces of the plate, it should be, according

to Eq. (9.29), the case that

sabnb ¼ 0; ð9:46Þ

where ~n is the unit normal to the surface. For the equation of the surface

z ¼ h x; yð Þ ð9:47Þ

the components of the normal are

nx ¼
qh

qx

1

1þ rhj j2
q ;

ny ¼
qh

qy

1

1þ rhj j2
q ;

nz ¼
1

1þ rhj j2
q ;

ð9:48Þ

where

rh ¼ qh

qx
;
qh

qy

� �

is a two-dimensional gradient (see any textbook on differential geometry,

e.g. DoCarmo, 1976; Coxeter, 1989). If j∇hj� 1, the normal is parallel to the

z-axis, and Eq. (9.46) reads

sxz ¼ syz ¼ szz ¼ 0: ð9:49Þ
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The conditions (9.49) should be satisfied for both surfaces of the plate and,

since the plate is thin, should be valid also within the plane. Taking into

account Eq. (9.33) and the definitions (9.43), one finds

qux

qz
¼ quz

qx
;

quy

qz
¼ quz

qy
ð9:50Þ

and

uzz ¼
n

1 n

qux

qx
þ quy

qy

� �

: ð9:51Þ

Assuming uz¼ h(x, y) to be z-independent within the plane, one finds from

Eq. (9.50)

ux ¼ z
qh

qx
; uy ¼ z

qh

qy
ð9:52Þ

and the components of the deformation tensor are

uxx ¼ z
q
2h

qx2
; uyy ¼ z

q
2h

qy2
; uxy ¼ z

q
2h

qx qy
;

uxz ¼ uyz ¼ 0; uzz ¼ z
q
2h

qx2
þ q

2h

qy2

� �

n

1 n
: ð9:53Þ

On substituting Eqs. (9.53) into Eq. (9.39) and integrating explicitly over

jzj<D/2 (D is the plate thickness) one finds for the energy of bending

deformation

Fb ¼
YD3

24 1 n2ð Þ

ð

d 2x r2h
� �2 þ 2 1 nð Þ q

2h

qx qy

� �2
q
2h

qx2
q
2h

qy2

" #( )

; ð9:54Þ

where

r2 ¼ q
2

qx2
þ q

2

qy2
ð9:55Þ

is the two-dimensional Laplacian. The last term in Eq. (9.54),

det
q
2h

qxi qxj

� �

;

is proportional to theGaussian curvatureK of the deformed surface (DoCarmo,

1976; Coxeter, 1989); for more details see below. It can be represented as a

total derivative:
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2 det
q
2f

qxi qxj

� �

¼ eimejm
q
2

qxm qxn

qf

qxi

qf

qxj

� �

ð9:56Þ

(̂e is the unit asymmetric 2	 2matrix) and, thus, leads to some integral over the

edges of the membrane. It therefore has no effect on the equations of motion.

Alternatively, one can refer to the Gauss Bonnet theorem (DoCarmo, 1976;

Coxeter, 1989) that
R

dSK is a topological invariant that is not changed during

smooth deformations. Thus, the bending energy (9.54) can be represented as

Fb ¼
k

2

ð

d 2x r2h
� �2

; ð9:57Þ

where

k ¼ YD3

24 1 n2ð Þ : ð9:58Þ

If we add the kinetic energy

T ¼ 1

2

ð

d 2xr
q~u

qt

� �2

� 1

2

ð

d 2x r
qh

qt

� �2

ð9:59Þ

(r is the mass density) and write the Lagrangian L¼T Fb and the

corresponding equations of motion

q

qt
r
qh

qt

� �

r2 kr2h
� �2 ¼ 0; ð9:60Þ

then we find for the frequencies of the bending waves

o2 ¼ k

r
q4; ð9:61Þ

in agreement with Eq. (9.20). The quantity k is called the bending rigidity.

Our consideration up to now has not taken into account the energy of

in-plane deformations. To take them into account one needs to add the energy

(9.39), where a, b¼ x, y. One can neglect in the definition (9.27) the nonlinear

terms

qux

qxa

qux

qxb
and

quy

qxa

quy

qxb

but one should keep the nonlinearities

qh

qxa

qh

qxb
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since, as we will see, they can be comparable to qua/qxb (further, ~u ¼ ux; uy
� �

is the two-dimensional vector):

uab ¼
1

2

qua

qxb
þ qub

qxa
þ qh

qxa

qh

qxb

� �

: ð9:62Þ

The total deformation energy is

F ¼ 1

2

ð

d 2x k r2h
� �2 þ l uaað Þ2 þ 2muabuab

n o

; ð9:63Þ

where

l ¼ l3D; m ¼ m3D ð9:64Þ
are the two-dimensional Lamé constants (henceforth we will write two-

dimensional parameters l, m, B, Y and s without subscripts and the corres-

ponding three-dimensional parameters with the subscript 3). The equations

for equilibrium deformations of the plate can be found by minimization of the

functional (9.63), plus interactions with external forces. After rather cumber-

some transformations (Landau & Lifshitz, 1970; Timoshenko & Woinovsky-

Krieger, 1959) one finds

kr4h
q
2w

qy2
q
2h

qx2
þ q

2w

qx2
q
2h

qy2
2

q
2w

qx qy

q
2h

qx qy

� �

¼ P; ð9:65Þ

r4wþ Y
q
2h

qx2
q
2h

qy2
q
2h

qx qy

� �2
" #

¼ 0; ð9:66Þ

where P is the density of external forces (per unit area) and w is the potential

for the stress tensor:

sxx ¼
q
2w

qy2
D; sxy ¼

q
2w

qx qy
D; syy ¼

q
2w

qx2
D: ð9:67Þ

These equations (the Föppl equations) are essentially nonlinear, and their

solution is, in general, a difficult task. One can, however, estimate the

deformation for the situation when jhj�D, the only one which is relevant

for graphene, where D is of the order of interatomic distance. The first term in

Eq. (9.65) is smaller in this situation than the second one and can be neglected

(Landau & Lifshitz, 1970). This means that the bending rigidity k is irrele-

vant, and it is in-plane deformation and the corresponding Young modulus

which determine the resistance to the external force. Dimensional analysis of

Eqs. (9.65) and (9.66) gives us a typical value of the deformation:
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h � L4P

Y

� �1=3

: ð9:68Þ

For example, for a circular plate of radius R with a clamped edge and uniform

P, the deformation at the centre is (Timoshenko &Woinovsky-Krieger, 1959)

h0 � 0:662R
RP

Y

� �1=3

: ð9:69Þ

Estimations show also that linear and nonlinear terms in the deformation

tensor (9.62) are, in general, of the same order of magnitude.

Graphene is an extremely strong material (the real values of the constants k,

B and m will be discussed later in this chapter). Also, being almost defect-free,

it can keep a deformation as high as, at least, 10% 15% (Kim et al., 2009).

Therefore, for typical flake sizes of the order of 10 to 100mm, a flake can bear

a weight of the order of billions of times its own weight (Booth et al., 2008).

There is another way to derive Eq. (9.57), which starts from the model of a

membrane as an infinitely thin plate, that is, a single flexible surface (Nelson,

Piran & Weinberg, 2004). It is natural to assume that the energy of a

deformed membrane depends on the mutual orientation of normals to the

surface at the neighbouring points which determines the orientation of elec-

tron orbitals, etc. (Fig. 9.2). If we discretize (e.g., triangulate) the surface, we

can write the corresponding free energy as

Fb ¼ ~k
X

ijh i
1 ~ni~nj
� �

; ð9:70Þ

where ~k > 0, ~ni is the normal to the ith triangle and the sum is taken over the

neighbouring triangles. The bending energy (9.70) is counted from the flat

state with all ~ni kOz. Since

Fig. 9.2. The orientation of normals and the directions of electron orbitals in
a fluctuating membrane (black) and in its ground state (grey).
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1 ~ni~nj ¼
1

2
~ni ~nj
� �2 ð9:71Þ

in the continuum limit it will be transformed to the invariant quantity

qna

qxb

qna

qxb

and

Fb ¼
k

2

ð

d 2x
qna

qxb

qna

qxb
ð9:72Þ

with k / ~k. On substituting Eq. (9.48) into Eq. (9.72) and keeping only the

lowest-order terms in qh/qxa we have

Fb ¼
k

2

ð

d 2x r2h
� �2

2 det
qh

qxi

qh

qxj

� �� �

: ð9:73Þ

The last term, which is proportional to the Gaussian curvature, can be

skipped for the reasons discussed above, and we have the expression (9.57).

One more view of Eq. (9.57) is based on the Helfrich model of liquid

membranes (Helfrich, 1973; Jones, 2002). The deformation energy in this

model is written in terms of the mean curvature H and Gaussian curvature

K of the surface:

F ¼ k

2

ð

dSH2 þ k 0
ð

dSK; ð9:74Þ

where, due to the Gauss Bonnet theorem, the second term is important only

for processes during which the topology is changed (e.g., the merging of two

vesicles). The first term is known also in mathematics as the Willmore func-

tional; for some recent discussions see Taimanov (2006) and Manyuhina et al.

(2010). For a general surface defined by Eq. (9.47) one has (DoCarmo, 1976)

dS ¼ dx dy 1þ rhj j2
q

; ð9:75Þ

K ¼ 1

1þ rhj j2
h i2

q
2h

qx2
q
2h

qy2
q
2h

qx qy

� �2
" #

; ð9:76Þ

H ¼ 1

1þ rhj j2
h i3=2

1þ qh

qx

� �2
" #

q
2h

qy2
þ 1þ qh

qy

� �2
" #

q
2h

qx2
� 2

q
2h

qx qy

qh

qx

qh

qy

( )

: ð9:77Þ
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Keeping only the lowest-order terms in j∇hj, we have

H � r2h ð9:78Þ

and, thus, Eq. (9.74) is equivalent to Eq. (9.57).

9.3 The statistical mechanics of flexible membranes

The expressions (9.62) and (9.63) provide a background for the statistical

mechanics of crystalline membranes at finite temperatures (Nelson & Peliti,

1987; Aronovitz & Lubensky, 1988; Abraham & Nelson, 1990; Le Doussal &

Radzihovsky, 1992; Nelson, Piran & Weinberg, 2004). Henceforth we will

consider only the classical regime, assuming that~u ~rð Þ and h ~rð Þ are static fields
fluctuating in space. Thus, the partition function is determined by a func-

tional integral

Z ¼
ð

D~u ~rð ÞDh ~rð Þexp bF ~u ~rð Þ; h ~rð Þ½ �f g; ð9:79Þ

where b¼T 1 is the inverse temperature and the free energy F (9.63) plays the

role of the Hamiltonian. The nonlinear term in Eq. (9.62) couples the two

fields, making the theory highly nontrivial at least as nontrivial as the

famous problem of critical behaviour (Wilson & Kogut, 1974; Ma, 1976).

If we neglect this term, the Hamiltonian (9.63) is split into two independent

Hamiltonians for the free fields. In the ~q representation, it reads

F0 ¼
k

2

X

~q

q4 h~q
�

�

�

�

2 þ 1

2

X

~q

mq2 ~u~q
�

�

�

�

2 þ lþ mð Þ ~q �~u~q� �2
h i

; ð9:80Þ

where h~q and ~u~q are Fourier components of h ~rð Þ and ~u ~rð Þ, respectively.

The correlation functions for the free fields can be found immediately using

the properties of Gaussian functional integrals (Wilson & Kogut, 1974; Ma,

1976; Faddeev & Slavnov, 1980):

G0 ~qð Þ ¼ h~q
�

�

�

�

2
D E

0
¼ T

kq4
; ð9:81Þ

D
ab
0 ~qð Þ ¼ u
a~qub~q

D E

0
¼ Pab ~qð Þ T

lþ 2mð Þq2 þ dab Pab ~qð Þ
	 
 1

mq2
; ð9:82Þ

where h. . .i0 means averaging with the Hamiltonian F0 and

Pab ~qð Þ ¼ qaqb

q2
ð9:83Þ
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is the projection operator on the ~q vector. Note that the normal normal

correlation function is related to h~q
�

�

�

�

2
D E

by

~n~q~n ~q

� �

¼ q2 h~q
�

�

�

�

2
D E

; ð9:84Þ

as follows from Eq. (9.48). On substituting Eq. (9.81) into Eq. (9.84) we find

~n~q~n ~q

� �

¼ T

kq2
: ð9:85Þ

However, the approximation (9.81) turns out not to be satisfactory. It does

not describe a flat membrane. Indeed, the membrane is more or less flat if the

correlation function

~n0~n~R

� �

¼
X

~q

~n~q
�

�

�

�

2
D E

exp i~q~R
� �

ð9:86Þ

tends to a constant at R!1 (normals at large distances have, on average,

the same direction). Instead, substitution of Eq. (9.85) into (9.86) leads to a

logarithmically divergent integral. Moreover, the mean-square out-of-plane

displacement

h2
� �

¼
X

~q

h~q
�

�

�

�

2
D E

ð9:87Þ

after the cut-off at qmin�L 1 gives the result

h2
� �

� T

k
L2 ð9:88Þ

(cf. Eq. (9.23)), which means that the membrane is crumpled (on average, it

has all three dimensions of the order of L).

Similarly, the in-plane square deformation

~u2
� �

¼
X

~q

~u~q

�

�

�

�

2
D E

ð9:89Þ

is logarithmically divergent, as in Eq. (9.22). Thus, we conclude, again, that

the statistical mechanics of two-dimensional systems cannot be based on the

harmonic approximation, or approximation of free fields.

The nonlinear term

qh

qxa

qh

qxb

in Eq. (9.62) after substitution into Eq. (9.63) results in a coupling of two

fields. The integral over ~u ~rð Þ in Eq. (9.79) remains Gaussian and can be
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calculated rigorously, using the well-known rule (Wilson & Kogut, 1974;

Faddeev & Slavnov, 1980)

Ð

D~u exp 1
2
~uL̂~u ~f~u

� �

Ð

D~u exp 1
2
~uL̂~u

� � ¼ exp
1

2
~f L̂

1~f

� �

: ð9:90Þ

As a result, the partition function (9.79) can be represented as

Z ¼
ð

Dh ~rð Þexp bF h ~rð Þ½ �f g; ð9:91Þ

with the Hamiltonian F depending on the out-of-plane deformations only:

F ¼ 1

2

X

~q

kq4 h~q
�

�

�

�

2 þ Y

8

X

~q~k~k
0

R ~k; ~k
0
;~q

� �

h~kh~q ~k

� �

h~k 0 h ~q ~k
0

� �

ð9:92Þ

where Y is the two-dimensional Young modulus (9.45) and

R ~k; ~k
0
;~q

� �

¼
~q	 ~k
� �2

~q	 ~k
0

� �2

q4
: ð9:93Þ

The term proportional to h4 in Eq. (9.92) describes anharmonic effects, or

self-interaction of the field h ~rð Þ, and Y plays the role of the coupling constant.

Thus, we have the problem of interacting fluctuations where the low-q

contribution is dominant, which is reminiscent of the problem of a critical

point. The difference is that for two-dimensional systems we have such a

critical situation at any finite temperature.

The correlation function G ~qð Þ ¼ h~q
�

�

�

�

2
D E

satisfies the Dyson equation

G 1 ~qð Þ ¼ G0
1 ~qð Þ þ S ~qð Þ; ð9:94Þ

where G0 ~qð Þ is given by Eq. (9.81) and the self-energy S ~qð Þ can be calculated

using perturbation theory in Y via, e.g., Feynman diagrams. We can introduce

the renormalized bending rigidity kR(q) by writing

G qð Þ ¼ T

kR qð Þq4 ð9:95Þ

and discuss this quantity. The first-order correction gives us (Nelson & Peliti,

1987)

dk qð Þ ¼ kR qð Þ k ¼ TY

k

X

~k

1

~qþ ~k
�

�

�

�

�

�

4

~q	 ~k
� �2

q2

2

6

4

3

7

5

2

: ð9:96Þ
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On calculating the integral over ~k we find

dk qð Þ ¼ 3TY

8pkq2
: ð9:97Þ

At

q � q
 ¼ 3TY

8pk

r

ð9:98Þ

the correction (9.97) is equal to the bare value of k or larger than k, and the

perturbation theory is obviously not applicable. The value q* plays the same

role as the ‘Ginzburg criterion’ (Landau & Lifshitz, 1980; Ma, 1976) in the

theory of critical phenomena: below q* the effects of interactions between

fluctuations dominate.

The increase of bending rigidity with increasing temperature has a simple

physical explanation. It is known, for the case of a corrugated plate, that

corrugations of height h�D (D is the thickness of the plate) should increase

its effective rigidity by a factor (h/D)2 (Briassoulis, 1986; Peng, Liew &

Kitipornchai, 2007). Taking into account Eq. (9.88) (with L! 1/q) and D� a,

we will have an estimation like Eq. (9.97).

Note that in the theory of liquid membranes, where the Hamiltonian is

given byEq. (9.74) and the in-plane deformations~u are not relevant, there is also

a divergent anharmonic correction to kR (q), due to higher-order (nonlinear)

terms in the expression (9.77) for the mean curvature (Peliti & Leibler, 1985):

dk � 3T

4p
ln

1

qa

� �

: ð9:99Þ

This term has the opposite sign in comparison with that for a crystalline

membrane (9.97) and is much smaller than the latter. Thus, the Hamiltonian

(9.92) takes into account the main nonlinearities, and ‘liquid’ anharmonicities

are not relevant for crystalline membranes.

In the next sections we will discuss how to solve this problem and what the

real behaviour of fluctuations with q� q* is.

9.4 Scaling properties of membranes and intrinsic

ripples in graphene

In situations in which one has strongly interacting long-wavelength

fluctuations, scaling considerations are extremely useful (Wilson & Kogut,

1974; Ma, 1976; Patashinskii & Pokrovskii, 1979). Let us assume that the
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behaviour of the renormalized bending rigidity at small q is determined by

some exponent Z:

kR qð Þ � q Z; ð9:100Þ

which means

G qð Þ ¼ ~h~q

�

�

�

�

�

�

2
� �

¼ A

q4 Zq
Z
0

: ð9:101Þ

Here we introduce a parameter

q0 ¼
Y

k

r

ð9:102Þ

of the order of a 1 to make A dimensionless. One can assume also a

renormalization of effective Lamé constants:

lR qð Þ; mR qð Þ � qZu ; ð9:103Þ

which means

Dab ~qð Þ ¼ u
a~qub~q
D E

� 1

q2þZu
: ð9:104Þ

Finally, instead of Eq. (9.88) we assume

h2
� �

� L2z: ð9:105Þ

The values Z, Zu and z are similar to critical exponents in the theory of critical

phenomena. They are not independent (Aronovitz & Lubensky, 1988).

First, it is easy to express z in terms of Z. Substituting Eq. (9.101) into

Eq. (9.87) and introducing, as usual, a cut-off at qmin�L 1 we have

z ¼ 1
Z

2
: ð9:106Þ

If Z> 1, z< 1 and the membrane remains flat (in the sense that its effective

thickness, h2h i
p

, is much smaller than L at L!1). Also, in the correlation

function (9.86), due to Eqs. (9.84) and (9.101), there is no divergence from the

region of small q:

~n~q~n ~q

� �

� 1

q2 Z
ð9:107Þ

is an integrable singularity.

The relation between Zu and Z has been derived by Aronovitz & Lubensky

(1988) using quite complicated tools, such as the renormalization group

and Ward identities in Feynman-diagram technique. Its meaning is, however,
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rather elementary and related to the requirement that the deformation tensor

has the correct structure (9.62) under the renormalization. This means that

the correlation functions of qua/qxb and

qh

qxa

qh

qxb

should have the same exponents. The first one follows immediately from

Eq. (9.104):

G1 ~qð Þ ¼ qua

qxb

� �

~q

qua

qxb

� �

~q

* +

¼ q2Daa ~qð Þ � q Zu : ð9:108Þ

For the second one we have a convolution:

G2 ~qð Þ ¼ qh

qxa

qh

qxb

� �

~q

qh

qxa

qh

qxb

� �

~q

* +

¼
X

~k1~k2

k1a qb k1b
� �

k2a qb þ k2b
� �

h ~k1
h ~q ~k1

h ~k2
h~qþ~k2

D E

: ð9:109Þ

For free fields we have Wick’s theorem, and

h1h2h3h4h i ¼ h1h2h i h3h4h i þ h1h3h i h2h4h i þ h1h4h i h2h3h i: ð9:110Þ

For interacting fields this is no longer the case, and we have some irreducible

averages (cumulants). It is supposed in the scaling theory that the scaling

properties of these cumulants are the same as those for the ‘reducible’ terms

(Patashinskii & Pokrovskii, 1979) and, thus, one can use Eq. (9.110) to calcu-

late the exponents. On substituting Eq. (9.110) into Eq. (9.109) one obtains

G2 ~qð Þ �
X

~k

k2 ~q ~k
� �2

G ~k
� �

G ~k ~q
� �

: ð9:111Þ

Finally, on substituting Eq. (9.101) into Eq. (9.111) we have

G2 ~qð Þ � 1

q2 2Z
: ð9:112Þ

On comparing Eq. (9.112) with Eq. (9.108), we arrive at the result

Zu ¼ 2 2Z: ð9:113Þ

This exponent is positive if 0< Z< 1 (we will see later that this is the case).

This means that, due to interactions between out-of-plane and in-plane

phonons, the former become harder but the latter become softer.

224 Crystal lattice dynamics

              

       



The temperature dependence of the constant A in Eq. (9.101) can be found

from the assumption that q* in (9.98) is the only relevant wave vector in the

theory and that Eqs. (9.81) and (9.101) should match at q� q*. The result is

(Katsnelson, 2010b):

A ¼ a
T

k

� �z

; ð9:114Þ

where a is a dimensionless factor of the order of one.

Before discussing how to calculate the exponent Z it is worth returning to

the Mermin Wagner theorem about the impossibility of long-range crystal

order in two-dimensional systems at finite temperatures.

The truemanifestation of long-range order is the existence of delta-functional

(Bragg) peaks in diffraction experiments; see, e.g., the discussion in Irkhin &

Katsnelson (1986). The scattering intensity is proportional to the static struc-

tural factor

S ~qð Þ ¼
X

nn 0

X

jj 0
exp i~q ~Rnj

~Rn 0j 0

� �h iD E

: ð9:115Þ

Using Eqs. (9.1) and (9.2) the expression (9.115) can be rewritten as

S ~qð Þ ¼
X

nn 0
exp i~q ~rn ~rn 0ð Þ½ �

X

jj 0
exp i~q ~rj ~rj 0

� �h i

Wnj;n 0j 0 ; ð9:116Þ

where

Wnj;n 0j 0 ¼ exp i~q ~unj ~un 0j 0
� �	 
� �

: ð9:117Þ

Equations (9.115) and (9.117) are written for the classical case in which~unj are

not operators but just classical vectors; for a more detailed discussion of the

scattering problem in crystal lattices, see Vonsovsky & Katsnelson (1989) and

Katsnelson & Trefilov (2002).

In conventional three-dimensional crystals, one can assume that the

displacements ~unj and ~un 0j 0 are not correlated, and

Wnj;n 0j 0 ¼ exp i~q~unj
� �� �

exp i~q~un 0j 0
� �� �

� mj ~qð Þm
j 0 ~qð Þ ð9:118Þ

when ~rn ~rn 0j j ! 1; heremj ~qð Þ areDebye Waller factors that are independent

of n due to translational invariance. Therefore, for ~q ¼ ~g (reciprocal lattice

vectors), where exp i~q~rnð Þ ¼ 1, the contribution to S ~qð Þ is proportional to N2
0,

whereas for a generic ~q it is of the order of N0. The Bragg peaks at ~q ¼ ~g are,

therefore, sharp; thermal fluctuations decrease their intensity (by the Debye

Waller factor) but do not broaden the peaks. The observation of such sharp
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Bragg peaks is an experimental manifestation of the existence of long-range

crystal order. In the two-dimensional case, the correlation functions of atomic

displacements do not vanish at ~rn ~rn 0j j ! 1. Indeed, in the continuum limit

~unj ! ~u ~rð Þ; h ~rð Þð Þ, where~u is already a two-dimensional vector, and

h ~rð Þ h ~r 0ð Þ½ �2
D E

¼ 2
X

~q

h~q
�

�

�

�

2
D E

1 exp i~q ~r ~r 0ð Þ½ �f g � ~r ~r 0j j2z; ð9:119Þ

~u ~rð Þ ~u ~r 0ð Þ½ �2
D E

¼ 2
X

~q

~u~q
�

�

�

�

2
D E

1 exp i~q ~r ~r 0ð Þ½ �f g � ~r ~r 0j jZu ð9:120Þ

after substitutions of Eqs. (9.101) and (9.103) (Abraham & Nelson, 1990).

This means that the approximation (9.118) does not work.

To estimate the structural factor near the Bragg peak, ~q ¼ ~gþ d~q, we can

use the identity

ech i ¼ exp
1

2
c2
� �

� �

ð9:121Þ

for the correlation function (9.117). Strictly speaking, it follows from

Wick’s theorem and, therefore, is exact only in the harmonic approximation

(Vonsovsky & Katsnelson, 1989) but, as was discussed above, should give us

correct scaling properties. Therefore,

Wnj;n 0j 0 � exp a1g
2
k ~r ~r 0j jZu a2 d~q?ð Þ2 ~r ~r 0j j2z

h i

; ð9:122Þ

where ~qk and~q? are components of the scattering vector parallel and perpen-

dicular to the crystal plane and we take into account that ~g? ¼ 0.

On substituting Eq. (9.122) into Eq. (9.116) one can see that the sum over

n0 at a given n is convergent, and S ~q ¼ ~gð Þ � N0. Thus, instead of a delta-

functional Bragg peak (in the thermodynamic limit) we have a sharp maximum

of finite width at d~q! 0 (Abraham & Nelson, 1990). This means that,

rigorously speaking, the statement that two-dimensional crystals cannot exist

at finite temperatures (Peierls, 1934, 1935; Landau, 1937) is correct. However,

the structural factor still can have very sharp maxima at~q ¼ ~g and the crystal

lattice can be restored from the positions of these maxima. In this (restricted)

sense, two-dimensional crystals do exist, and graphene is a prototype example

of them.

It was found experimentally by electron diffraction, namely by transmission

electron microscopy, that freely suspended graphene at room temperature

is rippled, that is, exhibits corrugations in the out-of-plane direction (Meyer

et al., 2007a, 2007b). The existence of these intrinsic, thermally induced,

226 Crystal lattice dynamics

              

       



ripples in graphene has been confirmed by atomistic Monte Carlo simulations

that use the potential LCBOPII mentioned already in Section 9.1 (Fasolino,

Los & Katsnelson, 2007). A typical snapshot is shown in Fig. 9.3. Further

detailed studies of the correlation function G(q) by such simulations have been

performed for single-layer graphene by Los et al. (2009) and Zakharchenko

et al. (2010b) and for bilayer graphene by Zakharchenko et al. (2010a). Some of

the results are shown in Fig. 9.4 (together with the results of the self-consistent

screening approximation, which will be discussed in the next section). Here

we show and discuss only the data for T¼ 300K.

At some intermediate value of q, roughly between 0.1 Å 1 and 1 Å 1, the

correlation functionG(q) follows the harmonic approximation (9.81). From the

slope of this dependence one can extract k� 1.1 eV, which means that graphene

at room temperature should be considered a rather hard membrane (k/T� 40).

For q> 1 Å 1 the continuum-medium approximation does not work, and G(q)

increases due to closeness to the Bragg peak. At q� q*� 0.2 Å 1 there is a

crossover to the behaviour described by Eq. (9.101), with

Z � 0:85: ð9:123Þ

This value is quite close to that predicted by functional renormalization-

group analysis of the model (9.92) (Kownacki & Mouhanna, 2009). Thus,

both the continuum model and atomistic simulations predict a rather broad,

power-law distribution of intrinsic ripples in graphene, without any dominant

spatial scale. Ripples in graphene on a substrate will be discussed in Chapter 11,

in relation to scattering mechanisms involved in electron transport.

Other evidence for thermally introduced ripples and their effects on

thermodynamic properties will be considered in Section 9.6.

Fig. 9.3. A typical atomic configuration (from atomistic Monte Carlo simu-
lations) for graphene at room temperature (courtesy of A. Fasolino).
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One needs to make one important comment about the model (9.63) (or,

equivalently, (9.92)). In this model of a so-called phantom membrane there is

a phase transition at T� k to a crumpled phase (Nelson, Piran & Weinberg,

2004). There are some arguments, however, in favour of the view that this
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Fig. 9.4. The correlation function G(q) found from numerical solution of the
SCSA equations, together with the data of atomistic Monte Carlo (MC)
simulations, with the bare Green function (9.81) and with the interpolation
formula (9.143). Panels (a) and (b) are changed by the scale; the insert
in panel (a) shows the accuracy of the interpolation (9.143). (Reproduced
with permission from Zakharchenko et al., 2010b.)
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transition is suppressed, and the low-temperature (quasi-)flat phase is stabil-

ized at any temperature if one adds a condition of avoided self-crossing

(short-range repulsion forces). It is assumed also that the scaling properties

of the (quasi-)flat phase are the same for ‘phantom’ and ‘real’ membranes

(Nelson, Piran & Weinberg, 2004). Anyway, the regime T� k� 104K is

obviously not reachable for graphene. What happens with graphene with

increasing temperature will be discussed in Section 9.6.

To finish this section let us discuss the case of bilayer graphene. Intrinsic

ripples in bilayer graphene were observed experimentally (Meyer et al., 2007b)

and studied theoretically (Zakharchenko et al., 2010b). The main difference

from the case of single-layer graphene can be seen even at the level of the

harmonic approximation for the bilayer membrane. Instead of Eq. (9.57)

(or (9.73)) we have

Fb ¼
1

2

ð

d 2x k r2h1
� �2 þ k r2h2

� �2 þ 2g dhð Þ2
h i

; ð9:124Þ

where h1 and h2 are out-of-plane deformations in each plane, k is the bending

rigidity per layer,

dh ¼ h1 h2 ð9:125Þ

and g describes a relatively weak van der Waals interaction between the layers.

By introducing an average displacement

h ¼ h1 þ h2

2
ð9:126Þ

one can rewrite Eq. (9.124) as

Fb ¼
1

2

ð

d 2x 2k r2h
� �2 þ k

2
r2 dh
� �2 þ 2g dhð Þ2

h i

ð9:127Þ

and thus we have, in the harmonic approximation, instead of Eq. (9.81)

hq
�

�

�

�

2
D E

¼ T

2kq4
; ð9:128Þ

dhq
�

�

�

�

2
D E

¼ T
1
2
kq4 þ 2g

: ð9:129Þ

Atomistic simulations (Zakharchenko et al., 2010a) give, at room temperature,

g� 0.025 eV Å4. At

q < qc ¼
4g

k

4

r

ð9:130Þ
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the correlation function (9.129) goes to a constant. In this regime, a bilayer

behaves like a single membrane with bending rigidity twice as large as that for

a single layer (see Eq. (9.128)). At q> qc the layers fluctuate more or less

independently. The simulations (Zakharchenko et al., 2010a) qualitatively

confirm this simple picture; the wave length of fluctuations at which the

crossover happens is about 2p/q*� 2 nm (at room temperature).

9.5 The self-consistent screening approximation

There are several ways to calculate the exponent Z analytically, with reason-

able accuracy. The simplest approximation is to rewrite Eq. (9.96) in a self-

consistent way:

kR qð Þ ¼ kþ TY
X

~k

1

kR ~kþ~q
�

�

�

�

�

�

� �

~kþ~q
�

�

�

�

�

�

4

~q	 ~k
� �2

q2k2

2

6

4

3

7

5

2

; ð9:131Þ

assuming that the Young modulus Y is not renormalized (Nelson & Peliti,

1987). On substituting Eq. (9.100) into Eq. (9.131) we find Z¼ Z 2, or Z¼ 1.

A more accurate result is given by the self-consistent screening approxima-

tion (SCSA) (Le Doussal & Radzihovsky, 1992; see also Xing et al., 2003;

Gazit, 2009; Zakharchenko et al., 2010b; Roldán et al., 2011).

The Hamiltonian (9.92) describes the self-interaction of a classical field

h ~rð Þ with the momentum-dependent interaction vertex YR ~k; ~k
0
;~q

� �

. To con-

sider the effects of the interaction one can use a Feynman-diagram technique

similar to that used in the theory of critical phenomena (Wilson & Kogut,

1974; Ma, 1976). The basic elements are the Green function G ~qð Þ (solid thick

line, in contrast with the solid thin line for G0 ~qð Þ) and the interaction vertex

(a dot), see Fig. 9.5(a). The exact and bare Green functions are related by the

Dyson equation (9.94), where, in the lowest order of the perturbation theory,

the self-energy S ~k
� �

is given by the diagram shown in Fig. 9.5(b). Its analytic

expresion corresponds to Eq. (9.96). The next step corresponds to the replace-

ment of G0 ~qð Þ by G ~qð Þ (Fig. 9.5(c)), which corresponds to the equation

(9.131) and gives Z¼ 1 as discussed above.

The SCSA corresponds to the summation of ‘ladder’ diagrams shown

in Fig. 9.5(d). This infinite summation is just a geometric progression, with

the result

1þ Âþ Â
2 þ � � � ¼ 1

1 Â
: ð9:132Þ
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The answer is

S ~qð Þ ¼ 2

ð

d 2~k

2pð Þ2
Yeff

~k
� �

"

~q	 ~k
� �2

k2

#2

G ~k ~q
� �

; ð9:133Þ

where

Yeff
~k
� �

¼ Y

1þ 3YI ~k
� � ; ð9:134Þ

I ~k
� �

¼ 1

8

ð

d 2~p

2pð Þ2
p2 ~k ~p
�

�

�

�

�

�

2

G ~pð ÞG ~k ~p
� �

: ð9:135Þ

Equations (9.134) and (9.135) describe renormalization of the Young modu-

lus as a result of summation of the infinite series of diagrams according to

Eq. (9.132).

Of course, the summation shown in Fig. 9.5(d) is not exact. This

approximation was introduced by Bray (1974) in the context of the theory

of critical phenomena for an n-component order parameter. It can be justified

rigorously if n� 1. In our problem, the number of components of the field h ~rð Þ
is n¼ 1; therefore, the applicability of the SCSA is not clear. The reasonable

agreement with the Monte Carlo simulations (Zakharchenko et al., 2010b; see

Fig. 9.4) and an explicit analysis of the higher-order diagrams (Gazit, 2009)

justify it as a reasonable, relatively simple, approximation in the theory of

fluctuating membranes.

(a)
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Fig. 9.5. (a) Basic elements of the diagram technique (see the text). (b) The
lowest-order perturbation expression for the self-energy corresponding to
Eq. (9.96). (c) The self-consistent version of the previous diagram corres-
ponding to Eq. (9.131). (d) The diagram summation equivalent to the SCSA.
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Let us consider Eqs. (9.133) (9.135) in the limit of small q, assuming that

S qð Þ � G 1
0 qð Þ and using Eq. (9.101) for the Green function. Thus,

I ~k
� �

¼ A2

8q
2Z
0

ð

d 2~p

2pð Þ2
1

p2 Z ~p ~k
�

�

�

�

�

�

2 Z
¼ A2

q
2Z
0

1

k2 2Z
I1 Zð Þ; ð9:136Þ

where

I1 Zð Þ ¼ 1

8

ð

d 2~x

2pð Þ2
1

x2 Z ~x ~x0j j2 Z
ð9:137Þ

and ~x0 ¼ 1; 0ð Þ. The expression (9.136) diverges at k! 0 and, therefore, one

can neglect 1 in the denominator of Eq. (9.134), assuming

Yeff
~k
� �

� 1

3I ~k
� � ¼ q

2Z
0

A2

k2 2Z

3I1 Zð Þ: ð9:138Þ

On substituting Eq. (9.138) into Eq. (9.133) we have

q4 Zq
Z
0

A
¼ 2q

Z
0q

4 Z

3AI1 Zð Þ I2 Zð Þ; ð9:139Þ

where

I2 Zð Þ ¼
ð

d 2~x

2pð Þ2
x2 2Z ~x	~x0ð Þ4

~x ~x0j j4 Z
: ð9:140Þ

Equation (9.139) is satisfied at arbitrary A, and Z can be found from the

equation

I1 Zð Þ ¼ 2

3
I2 Zð Þ: ð9:141Þ

The integrals I1 and I2 can be expressed via a G-function and calculated

explicitly (Le Doussal & Radzihovsky, 1992; Gazit, 2009). The answer is

Z ¼ 4

1þ 15
p � 0:821; ð9:142Þ

which is not far from the more accurate value Z� 0.85 discussed in the

previous section (Eq. (9.123)).

To find G(q) for the whole range of q one needs to solve Eqs. (9.133) (9.135)

numerically (Zakharchenko et al., 2010b). The results shown in Fig. 9.4 are

in reasonable agreement with the Monte Carlo simulations.
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Keeping in mind possible applications, it is worth mentioning that G(q) for

all q can be approximated as an interpolation between the high-q limit (9.81)

and the low-q limit (9.101) and (9.114):

G 1
a qð Þ ¼ kq4

T
þ k

T

� �1 Z=2 q
Z
0q

4 Z

a
ð9:143Þ

for some numerical factor a. This fitting is also shown in Fig. 9.4.

The SCSA can be used also to consider the effects of an external stress sextab

on the properties of membranes (Roldán et al., 2011). The former can

be described as an additional term in Eq. (9.63):

F ¼ 1

2

ð

d 2x k r2h
� �2 þ l uaað Þ2 þ 2muabuab þ sextab uab

n o

; ð9:144Þ

where

sextab ¼ ldabu
ext
gg þ 2muextab ð9:145Þ

can be expressed in terms of an external strain tensor uextab . By substituting

Eq. (9.62) into Eq. (9.144) one can see that, in the harmonic approximation,

the bare Green function (9.81) is modified as follows:

G0 ~qð Þ ¼ T

q2 kq2 þ lu ext
aa þ 2mu ext

ab qaqb= ~qj j2
� � : ð9:146Þ

Assuming for simplicity the case of isotropic external deformation,

uextab ¼ udab; ð9:147Þ

we have

G0 ~qð Þ ¼ T

q2 kq2 þ 2 lþ mð Þu½ � ; ð9:148Þ

where we consider only the case of expansion (u> 0); the effect of compression

on the membrane is actually very complicated (Sharon et al., 2002; Cerda &

Mahadevan, 2003; Moldovan & Golubović, 1999; Brau et al., 2011). One can

see that flexural fluctuations are suppressed by the strain at

q < qu ¼ q0u
1=2 ð9:149Þ

(see Eq. (9.102)). If qu� q*, that is,

u � 0:1
T

k
ð9:150Þ
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(see Eq. (9.98)), the anharmonic effects are assumed to be strongly suppressed,

and the harmonic approximation (9.148) should work up to q! 0. Numerical

solutions of the SCSA equations show that actually it happens even earlier, and

even deformations u� 10 4 10 3 can completely suppress the anharmonic

effects for the case of graphene at room temperature (Roldán et al., 2011).

This conclusion will be important for our discussion of the transport properties

of freely suspended graphene flakes in Chapter 11.

9.6 Thermodynamic and other thermal properties of graphene

The existence of the soft acoustic flexural (ZA) mode (9.15) and the related

tendency to intrinsic ripple formation is crucial to the thermodynamic prop-

erties of graphene, first of all, to its thermal expansion.

In the quasiharmonic approximation the lattice thermodynamic properties

are assumed to be described by harmonic expressions but with phonon

frequencies ol dependent on the lattice constant. In this approximation, the

thermal expansion coefficient

ap ¼
1

O

qO

qT

� �

p

ð9:151Þ

(where O is the volume for three-dimensional crystals and area for two-

dimensional ones; p is the pressure) is given by the Grüneisen law (Vonsovsky &

Katsnelson, 1989; Katsnelson & Trefilov, 2002)

ap ¼
gCV Tð Þ
OBT

; ð9:152Þ

where BT is the isothermal bulk modulus,

CV Tð Þ ¼
X

l

Cl; ð9:153Þ

where

Cl ¼
hol

T

� �2 exp
hol

T

� �

exp
hol

T

� �

1

� �2
ð9:154Þ

is the constant-volume heat capacity in the harmonic approximation, and

g ¼

P

l

glCl

P

l

Cl

ð9:155Þ
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is the macroscopic Grüneisen parameter, where

gl ¼
q lnol

q lnO
ð9:156Þ

are microscopic Grüneisen parameters.

Graphite is known to have a negative thermal expansion coefficient up

to 700K (Steward, Cook & Kellert, 1960). This behaviour has been

explained, in terms of the Grüneisen law, by Mounet & Marzari (2005) via

density-functional calculations of ol and gl. It turns out that the Grüneisen

parameters gl are negative, both in graphene and in graphite, for ZA phonons

over the whole Brillouin zone. The theory explained the change in sign of ap
at T� 700K for the case of graphite and predicted that ap< 0 at all tempera-

tures for the case of graphene. Negative thermal expansion of graphene

at room temperature and slightly above has been confirmed experimentally

by Bao et al. (2009). The linear thermal expansion coefficient at these tem-

peratures was about 10 5K 1, a very large negative value. According to

the quasiharmonic theory of Mounet & Marzari (2005), it was supposed to be

more or less constant up to temperatures of the order of at least 2000K.

However, straightforward Monte Carlo atomistic simulation with the

LCBOPII potential not assuming the quasiharmonic approximation

(Zakharchenko, Katsnelson & Fasolino, 2009) gave an essentially different

result (Fig. 9.6). One can see that, according to this calculation, ap is supposed

to change sign atT� 700 900K. Very recently, it was confirmed experimentally
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single-layer graphene. (Reproduced with permission from Zakharchenko,
Katsnelson & Fasolino, 2009.)
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that ap, while remaining negative, decreases in modulus with increasing

temperature up to 400K (Yoon, Son & Cheong, 2011). This temperature

dependence of ap(T), beyond the quasiharmonic approximation, is a true

anharmonic effect.

Interestingly, the lattice constant a and the average nearest-neighbour

distance Rnn exhibit different temperature dependences (see Fig. 9.6), whereas

for a flat honeycomb lattice a ¼ 3
p

Rnn. These deviations clearly show that

graphene at finite temperatures is not flat, due to the intrinsic ripples.

Similar calculations for the case of bilayer graphene have been performed

by Zakharchenko et al. (2010a). The results (Fig. 9.7) show that the change

of sign of da/dT happens at lower temperatures than for the case of single-

layer graphene and that in this sense bilayer graphene should be similar to

graphite. The thermal expansion perpendicular to the graphene plane turns

out to be positive, dc/dT> 0.

The Lamé constants l and m have also been found from atomistic simulations

(Zakharchenko, Katsnelson & Fasolino, 2009). The room-temperature values

of the elastic constants are

m � 10 eVA
� 2

; B � 12 eVA
� 2

; n � 0:12: ð9:157Þ
The calculated Young modulus (9.45) lies within the error bars of the experi-

mental value Y� 340� 50Nm 1 (Lee et al., 2008). Note that, per atomic

layer, it is an order of magnitude higher than that of steel.

One can see that the Poisson ratio in graphene is quite small,

� 0.1, which means that B� m and l�m. According to the simulations
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(Zakharchenko, Katsnelson & Fasolino, 2009) n decreases further with

increasing temperature and becomes negative at high enough temperatures.

Interestingly, the scaling theory of fluctuating membranes predicts that,

due to renormalizations of lR(q) and mR(q), at small q the Poisson ratio

should be negative, tending to 1
3
at q! 0 (Nelson, Piran & Weinberg,

2004). Maybe atomistic simulations for finite-sized crystallites give a feeling

for this tendency.

Another high-temperature anharmonic effect is the growth of the heat

capacity with the temperature beyond the Dulong Petit value 3R,

CV Tð Þ ¼ 3R 1þ T

E0

� �

ð9:158Þ

(Katsnelson & Trefilov, 2002). The atomistic simulations (Zakharchenko,

Katsnelson & Fasolino, 2009) confirm this behaviour, with E0� 1.3 eV.

Probably the most interesting thermal property of graphene, in view of

potential applications, is its extraordinarily high thermal conductivity (Balandin

et al., 2008; Ghosh et al., 2010; Balandin, 2011). Usually, solids with high

thermal conductivity are metals, and the thermal conductivity is determined

by conduction electrons whereas the phonon contribution is negligible (for

a general theory of phonon thermal conductivity, see Ziman, 2001). Carbon

materials (diamond, nanotubes and graphene) are exceptional. Their ther-

mal conductivity, being of phonon origin, can be higher than for any metal

(for a review, see Balandin, 2011). The very general reason is the high

phonon group velocity, due to the very strong chemical bonding and the

relatively low mass of the carbon nucleus. Currently, graphene has the

largest thermal conductivity among all known materials (Balandin et al.,

2008). The theory of this thermal conductivity was considered in Ghosh

et al. (2010). It is a complicated phenomenon, which is not yet fully under-

stood (in particular, the role of flexural phonons needs to be clarified).

Its practical importance is related to the problem of heat removal in the

electronics industry.

At high enough temperature, graphene is destroyed. This process was

studied by atomistic Monte Carlo simulations in Zakharchenko et al.

(2011). In these simulations the destruction was observed at about 4900K,

which makes graphene probably the most refractory material. The word

‘destruction’ is used instead of ‘melting’ to stress that it is a rather peculiar

process leading to the formation of carbon chains, with these chains being

strongly entangled and forming something like a polymer melt, rather than

a simple liquid (Fig. 9.8).
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9.7 Raman spectra of graphene

Themain experimental tool allowing us to study phonon spectra throughout the

Brillouin zone is inelastic neutron scattering (Vonsovsky & Katsnelson, 1989;

Katsnelson & Trefilov, 2002). Unfortunately, this method is not applicable

(up to now) to graphene because it requires rather massive samples. Optical

tools such as infrared and Raman spectroscopy provide us with information

only about phonons at some special points of the Brillouin zone. However, even

this information is of crucial importance.Raman spectroscopy is one of themain

techniques used in graphene physics (Ferrari et al., 2006; for a review seeMalard

et al., 2009).Herewediscuss some basic ideas aboutRaman spectra of graphene.

Fig. 9.8. A typical atomic configuration of graphene at T¼ 5000K from
atomistic Monte Carlo simulations (courtesy of K. Zakharchenko).
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The Raman effect is inelastic light scattering; ‘inelastic’ means that the

frequency of the scattered light, o0, is not equal to that of the incident light, o

(Raman, 1928; Raman & Krishnan, 1928; Landsberg & Mandelstam, 1928).

Its quantum explanation is based on the Kramers Heisenberg formula for the

light-scattering cross-section (Berestetskii, Lifshitz & Pitaevskii, 1971)

ds

do 0
¼ oo03
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d!þ0

; ð9:159Þ

where do0 is the element of solid angle of scattering light,~e and~e 0 are photon
polarization vectors for incident and scattered light, respectively, jf i and ji i
are the final and initial states of the scattering system, respectively, jni is its
intermediate state, ~dmn are matrix elements of the electric dipole momentum

operator,

oni ¼
En Ei

h
ð9:160Þ

and, due to the energy-conservation law,

o 0 ¼ oþ Ei Ef

h
: ð9:161Þ

The general expression (9.159) can be applied both to elastic (o¼o0 ) and to

inelastic (o 6¼ o0 ) cases; we will be interested here in the latter.

The electric dipole moment can be represented as a sum of contributions

from electrons and nuclei (phonons):

~d ¼ ~d eð Þ þ ~d phð Þ: ð9:162Þ

Correspondingly, we have the electron Raman effect when the state jni
corresponds to some electron excitation in the system and the phonon Raman

effect when jni differs from jii by the creation or annihilation of a phonon

with frequency ol. In the latter case,

o 0 ¼ o� ol; ð9:163Þ

where theþ and signs correspond to annihilation and creation of the phonon,

respectively. Keeping in mind that for visual light the wave vector of a photon

is much smaller than the inverse interatomic distance 1/a and bearing in mind

also the momentum-conservation law, one can conclude that in crystals only

phonons at the G point (~q ¼ 0) can normally be probed, to leading order of

perturbation, by the Raman effect. As we will see, this is not the case for

graphene, however.
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There are selection rules determining whether a given optical phonon can

be Raman-active (that is, it contributes to the Raman scattering) or infrared-

active (that is, it contributes to absorption of the photon), or both. In general,

such analysis requires the use of group theory (Heine, 1960).

For the case of graphene, at the G point there are the infrared-active

ZO mode and a doubly-degenerate Raman-active optical mode with deform-

ations lying in the plane (see Fig. 9.1). The latter corresponds to the so-called

Eg (g for gerade) representation of the point group of the honeycomb lattice.

The atomic displacements for this mode are shown in Fig. 9.9 (the mode is

doubly degenerate since there are two equivalent, mutually perpendicular,

directions of the displacements). Therefore, one could expect a single line with

the frequency ol¼ jo0 oj equal to that of oLO ~q ¼ 0ð Þ � 1580 cm 1. Indeed,

this line was observed long ago in graphite (Tuinstra & Koenig, 1970). It is

called usually the G peak. However, the Raman spectra of graphite are charac-

terized by the second sharp and intensive feature in Fig. 9.11 (Nemanich &

Solin, 1977, 1979), which is usually called the 2D peak in the literature on

graphene. (In the literature on nanotubes and in the review by Malard et al.

(2009), it is called the G0peak.) It was interpreted from the very beginning as

a two-phonon peak; a detailed theory has been proposed by Thomsen & Reich,

2000; Maultzsch, Reich & Thomsen, 2004). The basic idea is that in this case

the intermediate state jni in Eq. (9.159) is a combined electron phonon

excitation.

Fig. 9.9. Atomic displacements for a Raman-active optical phonon at the
G point.
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The basic physics originates from the existence of two valleys, K and K0;
the vector~q connecting K and K0 is equivalent to the vector GK (Fig. 9.10(a)).

Therefore, the process is allowed when (i) an incident photon initiates a

transition from hole to electron bands at the K point, the electron energy

being E0; (ii) the excited electron is transferred from K to K0, emitting a

phonon with ~q ¼ ~K and frequency o0; (iii) it is transferred back to K0,
emitting a second phonon, with ~q ¼ ~K and the frequency o0; and (iv) the

scattered photon is emitted from the state with En ¼ E0 2ho0 (Fig. 9.10(b)).

In this case o0¼o 2o0. This is a higher-order process in the electron

phonon coupling; however, this does not give any additional smallness since

the process is resonant: the electron bands in K and K0 are identical, and we

know that, for the case of perturbation of degenerate energy levels, the effect

of the perturbation has no smallness (Landau & Lifshitz, 1977). In the

electron photon interaction this is a second-order process, as is a normal

Raman effect; therefore, its probability can be comparable to that of single-

phonon Raman scattering.

Actually, there are several types of phonons at the K point (see Fig. 9.1);

both electrons and phonons have dispersion, so the 2D peak at �2700 cm 1 is

not a single line, but a band (see the high-frequency peak in Fig. 9.11).

Detailed study of its shape provides information about phonon dispersion

near the K point (Mafra et al., 2007). A theoretical analysis of the electron

phonon coupling which is responsible for the 2D peak for various modes has

been done by Jiang et al. (2005), within a tight-binding model, and by Park

et al. (2008) using density-functional calculations. The electron phonon

coupling is essentially different for different modes. Also, effects of destruc-

tive interference between contributions to the double resonance should be

taken into account (Maultzsch, Reich & Thomsen, 2004). As a result of all

these factors, the main contribution originates from TO phonons along the

q
K

(a)

Γ

K�
wph

w

w w�

ph

(b)

K K�

Fig. 9.10. The origin of the 2D Raman peak. (a) The scheme of momentum
conservation. (b) The scheme of the energy transfer (see the text).
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K M direction (Mafra et al., 2007). There is also a satellite line (at smaller

frequencies), which originates from the processes with one TO phonon and

one LA phonon involved (Mafra et al., 2007).

There is a noticeable shift in position of Raman peaks between graphene

and graphite (Ferrari et al., 2006), see Fig. 9.11. Moreover, one can easily

distinguish single-layer, bilayer, . . ., N-layer graphene (up to N� 5) by Raman

spectroscopy, which makes it a very suitable tool for the identification of

graphene.

If some defects are present, one of the phonon-induced scattering processes

responsible for the 2D peak can be replaced by elastic scattering by the

defects (the D peak, with the frequency jo0 oj �o0). ‘Resonant’ impurities

that change locally the sp2 state of carbon atoms to sp3, such as hydrogen,

fluorine and C C chemical bonds (see Section 6.6), give the main contribu-

tion to the origin of this peak, and its intensity can be used to estimate the

concentration of such locally modified sp3 centres in graphene (Elias et al.,

2009; Nair et al., 2010; Ni et al., 2010).

We hope these examples suffice to illustrate the importance of Raman

spectroscopy in graphene physics and chemistry.

To summarize, in this chapter we have considered some of the peculiarities

of the structural state, dynamics and thermodynamics of graphene. The conse-

quences of these peculiarities for the electronic properties of graphene will be

considered in the next two chapters.
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Fig. 9.11. The Raman spectra of graphite and graphene. The wavelength of
the incident light is 514 nm. (Reproduced with permission from Ferrari
et al., 2006.)
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10

Gauge fields and strain engineering

10.1 Strain-induced pseudomagnetic fields

We saw in the previous chapter that graphene at finite temperatures is

unavoidably corrugated. As a result, in any real atomic configuration the

three bonds of each atom with its neighbours are no longer equivalent;

see a snapshot fromMonte Carlo simulations by Fasolino, Los & Katsnelson

(2007), Fig. 10.1. Apart from atomically sharp inhomogeneities, there is a

large-scale, macroscopic nonequivalence which survives in a continuum-

medium description of graphene and is described in terms of the deformation

tensor uab.

Let us assume that the hopping parameters t1, t2 and t3 are different

throughout the whole sample and repeat the tight-binding derivation of the

Dirac Hamiltonian (Chapter 1). As a result, instead of Eq. (1.22) we find the

following effective Hamiltonian near the K point (Suzuura & Ando, 2002;

Sasaki, Kawazoe & Saito, 2005; Katsnelson & Novoselov, 2007):

Ĥ ¼~s ihv ~r ~A
� �

; ð10:1Þ

where

Ax ¼
3
p

2
t3 t2ð Þ;

Ay ¼
1

2
t2 þ t3 2t1ð Þ

ð10:2Þ

play the role of components of the vector potential. Thus, the difference in t1,

t2 and t3 shifts the Dirac conical point in some random direction. It does

not produce a mass term proportional to sz since the sublattices remain

equivalent. The field ~A is a typical gauge field similar to the vector potential

in electrodynamics. It was discussed first in the context of electron phonon
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interaction in carbon nanotubes (Suzuura & Ando, 2002; Sasaki, Kawazoe &

Saito, 2005) and then introduced in the physics of graphene by Morozov et al.

(2006) and Morpurgo & Guinea (2006) as a mechanism suppressing weak

(anti)localization. Note that the vector potential ~A in Eq. (10.1) has the

dimension of energy; in conventional units, it should be written as ðev=cÞ~A.
In the weakly deformed lattice, assuming that the atomic displacements ~u

are small in comparison with the interatomic distance a, the length of the

nearest-neighbour vectors ~ri will be changed by the quantity

dai ¼ ~ri þ~ui ~u0ð Þ2
q

a �~ri ~ui ~u0ð Þ
a

; ð10:3Þ

where~ui and ~u0 are displacement vectors for the corresponding atoms and we

take into account that ~rij j ¼ a. As a result, the new hopping integrals will be

ti � t
bt

a2
~ri ~ui ~u0ð Þ; ð10:4Þ

where

b ¼ q ln t

q ln a
ð10:5Þ

Fig. 10.1. A snapshot of a typical atomic configuration in atomistic Monte
CarlosimulationsofgrapheneatT¼ 300K; thenumber indicates thebond length
(Å). (Reproduced with permission from Fasolino, Los & Katsnelson, 2007.)
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is the electron Grüneisen parameter describing the dependence of the nearest-

neighbour hopping integral on the interatomic distance. This value lies in the

interval b� 2 3 (Heeger et al., 1988; Vozmediano, Katsnelson & Guinea,

2010). In the continuum limit (elasticity theory)

~ui ~u0ð Þ � ~rirð Þ~u ~rð Þ ð10:6Þ

and, thus,

Ax ¼ c
bt

a
uxx uyy
� �

;

Ay ¼ c
2bt

a
uxy

ð10:7Þ

(Suzuura & Ando, 2002; Mañes, 2007), where c is a numerical factor

depending on the detailed model of chemical bonding. In particular, one

should take into account that the nearest-neighbour hopping parameter

depends not only on the interatomic distance but also on the angles. Keeping

in mind an uncertainty in the value of b, we will put c¼ 1 from now on.

Thus, the two components of the vector potential are proportional to the

two shear components of the deformation tensor. On general symmetry

grounds, strains should also lead to a scalar potential proportional to

dilatation (Suzuura & Ando, 2002; Mañes, 2007):

V ~rð Þ ¼ g uxx þ uyy
� �

: ð10:8Þ

It originates from a redistribution of electron density under the deformation.

A naı̈ve estimation would be to assume that it should be of the order of the

bandwidth, g� 20 eV (Ono & Sugihara, 1966; Sugihara, 1983; Suzuura &

Ando, 2002). Recent density-functional calculations for single-layer graphene

give a much smaller value, g� 4 eV (Choi, Jhi & Son, 2010). However, these

two values are not actually in contradiction since the density functional takes

into account the effect of electron screening, which should lead to a replace-

ment g! g/e. Taking into account that for undoped single-layer graphene

e� 4.5 (see Eq. (7.89)), we see that screened g� 4 eV corresponds to

unscreened g0� 18 eV. This value seems to be in agreement with experimental

data on electron mobility in freely suspended graphene (Castro et al., 2010b);

for more details, see Chapter 11.

Within the framework of the Dirac approximation, a uniform strain

cannot open a gap in the spectrum, but leads just to a shift of conical points.

However, if the strain is very strong and t1, t2 and t3 are essentially different,

the gap can be opened. As was shown by Hasegawa et al. (2006), there is no

gap if the ‘triangular inequalities’
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tl1 tl2j j � tl3j j � tl1 þ tl2j j ð10:9Þ

are satisfied, where (l1, l2, l3) is a permutation of (1, 2, 3). This issue was later

studied in more detail within the framework of the tight-binding model

(Pereira, Castro Neto & Peres, 2009; Pellegrino, Angilella & Pucci, 2010;

Cocco, Cadelano & Colombo, 2010). According to the last of these papers,

the minimum shear deformation that leads to the gap opening is about 16%.

This is in principle possible in graphene without its destruction (Lee et al.,

2008). Henceforth we restrict ourselves to the case of smaller deformations,

for which the linear approximation (10.4) is applicable. We can see in this

chapter that this already provides very rich and interesting physics, with the

prospect of important applications.

If the strain is not uniform the vector potential (10.7) creates, in general,

a pseudomagnetic field (in normal units)

evB

c
¼ qAy

qx

qAx

qy
: ð10:10Þ

It is important to stress that the pseudomagnetic field acting on electrons from

the valley K0 is exactly opposite to that acting on electrons from the valley K:

BK ¼ BK0 : ð10:11Þ

This follows from explicit calculations and is obvious from the time-reversal

symmetry: deformations cannot break it for the honeycomb lattice as a

whole. However, if we have only smooth deformations and no scattering

processes between the valleys, the electrons in a non-uniformly strained

graphene will behave as if the time-reversal symmetry were broken (Morozov

et al., 2006; Morpurgo & Guinea, 2006). This has very important conse-

quences for the physics of the quantum Hall effect, weak localization, etc.

as will be discussed in this chapter.

10.2 Pseudomagnetic fields of frozen ripples

As the first example we consider the pseudomagnetic field created by a frozen

ripple. This means that we substitute Eq. (9.62) for the deformation tensor

into Eqs. (10.7) and (10.10) and take into account only the last term,

uab ¼
1

2

qh

qxa

qh

qxb
: ð10:12Þ

The effects of in-plane relaxation will be taken into account in the next

section.
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Thus, the amplitude of the pseudomagnetic field can be estimated as

B � hc

e

ah2

R3
; ð10:13Þ

where h is the typical height of the ripple and R is its radius (Morozov et al.,

2006). This field can be as large as 1T, for typical sizes of the ripples observed

in exfoliated graphene (Morozov et al., 2006).

To perform some quantitave analysis, let us start with the case of the

simple sinusoidal deformation shown in Fig. 10.2 (Guinea, Katsnelson &

Vozmediano, 2008). We will assume a modulation along the x-axis, tij� tij (x).

Thus, the problem is effectively one-dimensional and ky remains a good

quantum number. One can consider hopping parameters between the rows

(see Fig. 10.2, right panel) that are equal to t (for horizontal bonds) and

2t cos ky
3
p

a

2

 !

for other bonds.

If we assume a modulation of the hopping parameters,

t xð Þ ¼ tþ dt xð Þ; ð10:14Þ
then the two hoppings are renormalized as

t! t xð Þ;

2t cosj! t2 xð Þcos2jþ dt xð Þ½ �2 sin2j
q

;
ð10:15Þ

x

y

(a) (b)

Fig. 10.2. (a) A sketch of the sinusoidal ripple. (b) Atomic rows of a
honeycomb lattice. (Reproduced with permission from Guinea, Katsnelson &
Vozmediano, 2008.)
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where j ¼ ky 3
p

a=2. Let us assume

dt xð Þ ¼ dt sin
2px

l

� �

; ð10:16Þ

where l is the period of modulation. The electron spectrum has been

calculated numerically for a strip with periodic boundary conditions; the

results are shown in Fig. 10.3 (Guinea, Katsnelson & Vozmediano, 2008).

The most important result is the appearance of a dispersionless zero-energy

mode, its phase volume growths with increasing dt/t. This is related to the

topologically protected zero-energy Landau level in an inhomogeneous mag-

netic field for the Dirac equation (Section 2.3). There are also some features

that are reminiscent of other Landau levels, but they are essentially dispersive

which changes the situation dramatically from the case of a real magnetic

field (but see Section 10.4). The real magnetic field B can be included in the

calculations via the replacement

ky ! ky þ
eB

hc
x: ð10:17Þ

The results are shown in Fig. 10.4 (Guinea, Katsnelson & Vozmediano, 2008).

Two important features of these results should be mentioned. First, the combin-

ationof the pseudomagnetic field due to rippling anda realmagnetic field leads to

abroadeningofallLandau levels except the zero-energyone; this is a consequence

of the topological protection of the zero-energy Landau level. Second, due to
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Fig. 10.3. Low-energy states induced by the ripple shown in Fig. 10.2. The
average hopping is 3 eV. The width of the ripple is 1200a¼ 168nm. The modu-
lations of the hopping dt/t are 0, 0.02 and 0.04 (from left to right). (Reproduced
with permission from Guinea, Katsnelson & Vozmediano, 2008.)
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Eq. (10.11) for the pseudomagnetic field the effective total fields acting on

electrons from the valleys K and K0 are different, which results in a valley

polarization. One can clearly see in Fig. 10.4 that the phase space of the

dispersionless zero-energy level for thevalleyK0 is larger than that for thevalleyK.

The first of these conclusions seem to be relevant for the interpretation of

some of the peculiarities of the quantumHall effect in graphene (Giesbers et al.,

2007). The activation gaps for the quantum Hall plateau at n¼ 2 and n¼ 6

have been extracted from the temperature dependences of the resistivity rxx (T).

Their dependences on the magnetic field are presented in Fig. 10.5. In the ideal

case they would follow B
p

dependences (see Eqs. (2.30) and (2.31)). How-

ever, due to disorder there are deviations from this law and the stronger the

disorder the higher the magnetic field at which the B
p

law is restored. One

can see that, for n¼ 2, for which the zero-energy Landau level is involved, it

happens much earlier than it does for n¼ 6. This was explained by Giesbers

et al. (2007) by postulating that random pseudomagnetic fields created by

ripples (Morozov et al., 2006) contribute essentially to the broadening of all

Landau levels except the zero-energy one, due to its topological protection

(Novoselov et al., 2005a; Katsnelson, 2007a). The same situation should

occur also for the case of bilayer graphene (Katsnelson & Prokhorova, 2008).

The electronic structure of the frozen sinusoidal ripple has been studied

by Wehling et al. (2008a) by carrying out density-functional calculations.
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Fig. 10.4. The same as in Fig. 10.3 (dt/t¼ 0.04) but with a magnetic field of
B¼ 10T. Upper panel, K value; lower panel, K0 value. (Reproduced with
permission from Guinea, Katsnelson & Vozmediano, 2008.)

10.2 Pseudomagnetic fields of frozen ripples 249

              

       



These calculations confirm the qualitative predictions of the tight-binding

model concerning the existence of zero-energy states. A schematic view of

the ripple is shown in Fig. 10.6 and the results for the width of the dis-

persionless zero-energy mode are illustrated in Fig. 10.7. This qualitative

agreement is not trivial since the tight-binding model takes into account

neither next-nearest-neighbour hopping nor the electrostatic potential (10.8).

The reason why the latter is not relevant here will be clear later (see

Section 10.6).

The calculations by Wehling et al. (2008a) demonstrate a complete sub-

lattice polarization for the zero-energy pseudo-Landau states. This follows

from Eq. (10.11): in contrast with the usual quantum Hall effect (Sections 2.2

and 2.3), the solutions for both valleys belong to the same sublattice.

It was shown by Wehling et al. (2008a) that, if in-plane relaxation of atoms

is allowed, the dispersionless zero-energy mode disappears for the geometry

under consideration. The reason for this behaviour will be discussed in the

next section.
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Fig. 10.5. Energy gaps 2D between two Landau levels extracted from the
temperature dependence of the resistivity rxx as a function of the magnetic
field for n¼þ2 (full triangles), n¼�2 (open circles) and n¼þ6 (full
squares). The dashed and dotted lines are the theoretically expected energy
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10.3 Pseudomagnetic fields of ripples: the effect of in-plane relaxation

Let us assume a fixed distribution of out-of-plane deformation h(x, y).

If in-plane relaxation is allowed, the in-plane deformations ux and uy should

be found from the minimum of the total energy (9.63) and excluded (Wehling

et al., 2008a; Guinea, Horovitz & Le Doussal, 2008). It is convenient to use

the complex-number notation, z¼xþ iy, z*¼ x iy,
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the fit to the expression aDk/(2p) ¼ A1(h/l)
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Fig. 10.6. Schematic top and side views of the ripple used in the electronic
structure calculations by Wehling et al. (2008a).
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q ¼ q

qz
¼ 1

2

q

qx
i
q

qy

� �

;

q

 ¼ q

qz

¼ 1

2

q

qx
þ i

q

qy

� �

;

r2 ¼ 4 qq


ð10:18Þ

and

u z; z
ð Þ ¼ ux iuy;

A z; z
ð Þ ¼ Ax iAy:
ð10:19Þ

We will express the deformation tensor via A using Eq. (10.7). As a result, the

free energy (9.63) can be rewritten as (Wehling et al., 2008a)

F ¼
ð

d 2z 8k qq

hð Þ2þ lþ mð Þ 1

2
q

uþ q


uð Þ þ qh q
h

� ��

þ m quþ qhð Þ2
h i

q

u
 þ q


hð Þ2
h i




¼
ð

d 2z 8k qq

hð Þ2þ ma2

b2t2
AA


�

þ lþ mð Þ a

2bt

1

qq

 q


2Aþ q
2A


� �

þ 1

qq

R h½ �2

� �


; ð10:20Þ

where

R h½ � ¼ q
2h q
2h qq


hð Þ2 ¼ q qh; q
hð Þ
q z; z
ð Þ ð10:21Þ

is proportional to the Gaussian curvature of the surface. On minimizing

Eq. (10.20) for a given h(z, z*) one finds

A ¼ bt

a

lþ m

lþ 2m

q
2

qq

R; ð10:22Þ

evB

c
¼ ibt

a

lþ m

lþ 2m

q
3

q

3

qq

ð Þ2

R: ð10:23Þ

One can see from Eqs. (10.22) and (10.23) that for the case of a free membrane

both the pseudomagnetic field and the vector potential vanish identically if h

depends only on one Cartesian coordinate, which means R� 0. This is not so,

as we will see in Section 10.5, if the membrane is under strain, in which case

an additional term should be added to Eq. (10.20).
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This explains the disappearance of zero-energy states created by a frozen

sinusoidal ripple under relaxation mentioned at the end of the previous section.

If we induce the field

fab ~rð Þ ¼ qh

qxa

qh

qxb
ð10:24Þ

and its Fourier component

fab ~k
� �

¼
X

~k1

k1a kb k1b
� �

h~k1h~k ~k1
ð10:25Þ

then the symbolic expression (10.23) can be represented in an explicit form

(Guinea, Horovitz & Le Doussal, 2008)

eB ~k
� �

hc
¼ iky

3k2x � k2y

k4
b

a

lþ m

lþ 2m
k2y fxx

~k
� �

þ k2x fyy
~k
� �

� 2kxkyfxy ~k
� �h i

: ð10:26Þ

This gives us a formal solution of the problem.

Importantly, Eqs. (10.23) and (10.26) reflect the trigonal symmetry of the

problem: if we have an isotropic ripple, h¼ h(r), and thus R¼R(r), the

pseudomagnetic field will have an angular dependence

B r;jð Þ ¼ sin 3fð ÞB0 rð Þ; ð10:27Þ

where f is the polar angle (Wehling et al., 2008a).

In the next chapter, when discussing electron scattering by the ripples we

will be interested in the correlation functions of vector and scalar potentials

created by the intrinsic ripples. They are proportional to

Fab;gd ~qð Þ ¼ fab ~qð Þfgd ~qð Þ
� �

¼
X

~q1~q2

q1a q1b qb
� �

q2g q2g þ qd
� �

h~q1h~q ~q1h ~q2h ~q ~q2

� �

: ð10:28Þ

To estimate the correlation function on the right-hand side of Eq. (10.28) one

can use Wick’s theorem (9.110) and the results of Section 9.4. The answer is

(Katsnelson, 2010b)

F ~qð Þ �

T

k

� �2
ln q=q


q2
; q > q
;

T

k

� �2 Z
1

q
2Z
0 q2 2Z

; q < q
;

8

>

>

>

>

<

>

>

>

>

:

ð10:29Þ

10.3 Pseudomagnetic fields of ripples: in-plane relaxation 253

              

       



where q* is the crossover wave vector (9.98). This means that the correlation

function of the vector potential is singular at q! 0. At the same time, the

correlation function

B~q

�

�

�

�

2
D E

� q 2 A~q

�

�

�

�

2
D E

ð10:30Þ

tends to zero at q! 0. Similarly to Eq. (10.27) in real space, it has the angular

dependence sin2ð3j~qÞ, where j~q is the polar angle of the vector ~q (Guinea,

Horovitz & Le Doussal, 2008).

10.4 The zero-field quantum Hall effect by strain engineering

In the previous sections we discussed the gauge fields created by ripples, which

are almost unavoidable in graphene. However, one can use Eqs. (10.7) and

(10.10) to create intentionally a magnetic field with the desired properties, to

manipulate the electronic structure of graphene via ‘strain engineering’. First

of all, let us consider an opportunity to create a uniform, or almost uniform,

pseudomagnetic field and thus realize Landau quantization and the quantum

Hall regime without a real magnetic field (Guinea, Katsnelson & Geim, 2010;

Guinea et al., 2010).

Let us consider the simplest case of plane geometry, where h¼ 0 and the

strain tensor is created by the u-field only. Within linear two-dimensional

elasticity theory the general solution for the strain tensor can be written in

terms of two arbitrary analytic functions g(z) and k(z), namely

sxx ¼
q
2f

qy2
; syy ¼

q
2f

qx2
; sxy ¼

q
2f

qx qy
; ð10:31Þ

where

f x; yð Þ ¼ Re z
g zð Þ þ k zð Þ½ � ð10:32Þ

(Landau & Lifshitz, 1970; Vozmediano, Katsnelson & Guinea, 2010). For a

purely shear deformation, sxx¼ syy, which means that g(z)¼ 0. Thus, the

components of the vector potential which are expressed in terms of stress as

Ax ¼
cbt

am
sxx syy
� �

;

Ay ¼
2cbt

am
sxy

ð10:33Þ

are proportional to the real and imaginary parts of d2 k(z)/dz2, respectively, and
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B � Im
d 3k zð Þ
dz3

: ð10:34Þ

A pure shear deformation that leads to a uniform pseudomagnetic field is

k zð Þ ¼ Az3 ð10:35Þ
(A is a constant). The general deformation (including dilatation) which leads

to a uniform pseudomagnetic field is determined by the function

f zð Þ ¼ Az3 þ Bz
z2 ð10:36Þ
(A and B are constants). It corresponds to the strain tensor linearly dependent

on coordinates,

uab ¼
u

L
xaeb; ð10:37Þ

where u is a typical stress, L is the sample size and~e is an arbitrary unit vector.

The effective pseudomagnetic field is associated with a magnetic length

1

l2B
¼ eB

hc
� bu

aL
: ð10:38Þ

For u ¼ 10 2 and L� 10mm we obtain lB� 0.2mm, which corresponds to a

magnetic field of about 0.3T. Actually, much higher deformations and, thus,

much higher pseudomagnetic fields can be created in graphene.

In reality, the stress can be applied only normally to the boundary of a

sample. Let the boundary have an equation in polar coordinates r¼ r(j),

with the normal vector (nx(j), ny(j)). The condition that the applied forces

are normal to the boundary means that

sxxnx þ sxyny ¼ a jð Þnx;
sxynx þ syyny ¼ a jð Þny

ð10:39Þ

with some unknown function a(j). These equations have a solution if

sxx að Þ syy a
� �

s2xy ¼ 0: ð10:40Þ

At the same time, the general solution (10.31) and (10.32) can be written, with

a proper choice of coordinates, as

sxx ¼ syy ¼ Ay;

sxy ¼ Ax:
ð10:41Þ

On substituting Eq. (10.41) into Eq. (10.40) we find

a jð Þ ¼ �Ar jð Þ: ð10:42Þ
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It follows from Eq. (10.39) that

nx

ny
¼ �rþ y

x
¼ �1þ sinj

cosj
ð10:43Þ

and, at the same time,

nx

ny
¼ dy

dx
: ð10:44Þ

Coming back to the polar coordinates, we find the following equation for the

required shape:

d lnr

dj
¼ sinj� cos 2jð Þ

cosj� sin 2jð Þ ; ð10:45Þ

with the solution

r jð Þ ¼ constant

cos j=2ð Þ � sin j=2ð Þð Þ �1þ 2 sinjð Þ½ �2=3
ð10:46Þ

(Guinea, Katsnelson & Geim, 2010). This shape is shown in Fig. 10.8. It is the

only one which allows us to have an exactly uniform pseudomagnetic field.

Fortunately, numerical solutions of the equations of the theory of elasticity

show that it is not difficult to have a quasi-uniform pseudomagnetic field in

much more general and more realistic situations; what is really important is to

Fig. 10.8. The shapegivenbyEq. (10.46)withnormal stress givenbyEqs. (10.41)
and (10.42). (Reproduced with permission from Guinea, Katsnelson &
Geim, 2010.)
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keep the trigonal symmetry of the stress (Guinea, Katsnelson & Geim, 2010;

Guinea et al., 2010). One can show also that the presence of dilatation and,

thus, of an electrostatic potential (10.8) does not affect the results (Guinea

et al., 2010). As an example, we present here the results obtained by Guinea,

Katsnelson & Geim (2010) for a hexagonal flake with external forces applied

to three edges (Fig. 10.9). One can see that the value of the pseudomagnetic

field in the central part of the flake is uniform to high accuracy. As a result,

the density of states averaged over the central region clearly exhibits pro-

nounced Landau levels (Fig.10.10).

It was suggested by Guinea, Katsnelson & Geim (2010) that one should

use electron Raman scattering to observe the Landau levels created by strain.

Soon after that, this effect was observed by scanning tunnelling microscopy

for graphene bubbles on a platinum surface (Levy et al., 2010). It is significant

that these bubbles have a shape with trigonal symmetry. The value of the

pseudomagnetic field created by spontaneous deformation in these bubbles

was estimated by Levy et al. (2010) to be approximately 300T, which is much

higher than any real magnetic field attainable to date.

Fig. 10.9. A pseudomagnetic field in a hexagon of a size 1.4 mm that is
strained by the forces applied to three sides. The maximum strain of 20%
creates an effective field of about 10T at the hexagon’s centre. The counters
correspond to 8, 6, 4, 2, 0 and –2T, from inside to outside. (Reproduced with
permission from Guinea, Katsnelson & Geim, 2010.)
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Owing to the condition (10.11), the system as a whole remains time-reversal-

invariant, and, due to the Onsager relations (Zubarev, 1974), one should have

sxy¼ 0 (here s is the conductivity, not the stress!). In terms of edge states

(Section 5.8) this results from the existence of two counter-propagating edge

states, from values K and K0, without total charge transfer. This situation can

be described as a ‘valley quantum Hall effect’ analogous to the spin quantum

Hall effect (Kane & Mele, 2005a, 2005b). Inhomogeneities at the edges will

lead to a scattering between the valleys; however, one can show that, due to

the smallness of the parameter a/lB, the mixture of the counter-propagating

edge states can be very small (Guinea, Katsnelson & Geim, 2010).

10.5 The pseudo-Aharonov–Bohm effect and transport gap

in suspended graphene

As the next example, we consider the pseudomagnetic field arising in a freely

suspended graphene membrane (Fogler, Guinea & Katsnelson, 2008). If it is

charged, with the electron density n, the electrostatic pressure acts on the

membrane (Jackson, 1962),

p ¼ 2pe2

e
n2; ð10:47Þ

where e is the dielectric constant. Under this pressure, the membrane will be

bent (Fig. 10.11), with the equation of equilibrium

k
d4h xð Þ
dx4

t
d2h

dx2
¼ p; ð10:48Þ
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Fig. 10.10. The average density of states in the central region of diameter
0.5 mm for the hexagon shown in Fig. 10.9. (Reproduced with permission
from Guinea, Katsnelson & Geim, 2010.)
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where t is the external strain (this follows from the minimization of the total

energy (9.144) in the presence of an external strain, sextxx ¼ t, and uxx is given

by Eq. (10.12)). If we assume that the membrane is supported at x¼�L/2
then the solution of Eq. (10.48) satisfying the boundary conditions is

(Timoshenko & Woinowsky-Krieger, 1959)

h xð Þ ¼ pL4

16u4k

cosh 2ux=Lð Þ
cosh u

1

� �

þ pL2 L2=4 x2
� �

8u2k
; ð10:49Þ

u 2 ¼ tl 2

4k
: ð10:50Þ

The strain has to be found self-consistently, as

t ¼ t0 þ Y

ð

L=2

L=2

dx uxx ¼ t0 þ
Y

2L

ð

L=2

L=2

dx
dh

dx

� �2

; ð10:51Þ

where t0 is an external strain of non-electrostatic origin. First we will assume,

for simplicity, that t0¼ 0 and

n� ek

e2L3

r

; ð10:52Þ

which gives us u� 1. In this regime only the last term on the right-hand side of

Eq. (10.49) survives, and the profile h(x) is represented by a simple parabola:

h xð Þ ¼ h0 1
4x2

L2

� �

; ð10:53Þ

K K

ky

kx

K� K�

Ay

(b)

graphene layer

Gate

(a)

L

h0

Fig. 10.11. (a) A sketch of the model of a suspended graphene membrane
under consideration (see the text). (b) Fermi-circle positions in the Brillouin
zone in the leads (left) and in the suspended region (right). (Reproduced with
permission from Fogler, Guinea & Katsnelson, 2008.)
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where

h0 ¼
3p

64

e2

eY
n2L4

� �1=3

ð10:54Þ

and

t ¼ pL2

8h0
¼ pe2n2L

4eh0
: ð10:55Þ

The deformation uxx creates the vector potential. Its effect is largest if the

zigzag direction is along the y-axis (this means a change of coordinates in

comparison with Eq. (10.7)), thus

Ax ¼ 0; Ay ¼ �
bt

a
uxx; ð10:56Þ

where the signs � correspond to the valleys K and K0, respectively. Thus, the
conical points will be shifted, inside the membrane, in the y-direction (see

Fig. 10.11(b)). If this shift is larger than the Fermi wave vector kF, that is,

kF <
Ay

�

�

�

�

hv
; ð10:57Þ

the matching of wave functions in the leads and in the membrane becomes

impossible, and the transport though the membrane will be totally suppressed;

that is, the transport gap will be open. Here we assume, for simplicity, that the

concentrations of charge carriers for the leads and membrane are the same.

To proceed further, let us replace the deformation uxx in Eq. (10.56) by its

average value,

uxx ¼
t

Y
: ð10:58Þ

Thus, taking into account Eqs. (10.54) (10.56), we have an estimation

Ay

�

�

�

�

hv
� e2

Ye

� �2=3

n4=3L 1=3 � a2n4=3L 1=3

e2=3
: ð10:59Þ

Keeping in mind that kF � n1/2, we see that, if all of the strain is purely

electrostatic, the condition (10.57) is not satisfied and the gap never opens.

However, it can be open (and will certainly be open, if n is small enough) if

t0 6¼ 0 in Eq. (10.51). This gap opening is an effect of the vector potential

itself, not of the pseudomagnetic field, and takes place even if the vector

potential is constant: Ay¼ constant, B¼ 0. Therefore, it can be considered to

be an analogue of the Aharonov Bohm effect for pseudomagnetic fields.
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The scattering problem can be solved exactly if one assumes, for simplicity,

Ay¼ constant. The calculations are absolutely similar to those in Chapters 3

and 4. We assume (as has already been mentioned) that we have the same value

of kF in the leads and in the membrane. This means that the y-component

of the wave vector in the leads is

ky ¼ kF sinj ð10:60Þ
(j is the incidence angle) and within the membrane it is replaced by

ky ! ky q � ky
Ay

hv
: ð10:61Þ

The transmission coefficient is (Fogler, Guinea & Katsnelson, 2008)

T ky
� �

¼ k21k
2
2

k21k
2
2 þ k2Fq

2 sin2 k2Lð Þ
; ð10:62Þ

where

k1 ¼ k2F k2y

q

¼ kF cosj;

k2 ¼ k2F ky q
� �2

q

:

ð10:63Þ

The total conductance can be calculated, using the Landauer formula, as

G ¼ 4e2

h
W

ð

kF

kF

dky

2p
T ky
� �

; ð10:64Þ

where W is the width of the membrane.

Pereira and Castro Neto (2009) have suggested that one could use this

effect for strain engineering: by applying some external strain distribution to

graphene one can create a desirable distribution of the vector potential and

thereby manipulate the electronic transport through graphene. This type of

strain engineering is different from that considered in the previous section

since no real gaps due to Landau quantization are required, transport gaps

due to the ‘pseudo-Aharonov Bohm effect’ suffice.

10.6 Gap opening by combination of strain and electric field

Let us consider now the case of coexistence of pseudomagnetic fields and

electrostatic potential. We will assume that all these perturbations are smooth

and therefore the intervalley scattering can be neglected. Thus, the Hamiltonian

of the system is

Ĥ ¼ Ĥ0 þ ĤA þ ĤV; ð10:65Þ
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where

Ĥ ¼ ihv~̂s ~r;
ĤA ¼ ŝxAx ~rð Þ ŝyAy ~rð Þ;
ĤV ¼ V ~rð Þ:

We will assume that both perturbations are weak and use the perturbation

theory for the Green function:

Ĝ ¼ 1

E Ĥþ id
ð10:66Þ

(cf. Sections 4.2 and 6.4). We can formally write the answer via the Dyson

equation,

Ĝ ¼ 1

E Ĥ0 Ŝ Eð Þ
; ð10:67Þ

where Ŝ Eð Þ is the self-energy operator, which can be written as a perturbation

series

Ŝ Eð Þ ¼ ĤA þ ĤV þ ĤA þ ĤV

� �

Ĝ0 ĤA þ ĤV

� �

þ � � � ; ð10:68Þ

where Ĝ0 is the Green function of the Hamiltonian Ĥ0, Eqs. (4.35) and (4.36).

Both Ĝ0 and ĤA contain terms proportional to ŝx and ŝy, and their product

can generate ŝz, that is, the mass term:

ŝxŝy ¼ ŝyŝx ¼ iŝz: ð10:69Þ
In the lowest order, such terms originate from the term linear in ĤA and linear

in Ĝ0. It is also linear in ĤV. This cross-term has the form

~̂
S0 Eð Þ ¼ ĤV

1

E Ĥ0 þ id
ĤA þ ĤA

1

E Ĥ0 þ id
ĤV

¼ ĤV E Ĥ0

� � 1

Eþ idð Þ2 Ĥ
2

0

ĤA

þ ĤA E Ĥ0

� � 1

Eþ idð Þ2 Ĥ
2

0

ĤV: ð10:70Þ

Perturbatively, the correction to the effective Hamiltonian is Ŝ ~k;~k;E
� �

(the

self-energy depends on two wave vectors since the Hamiltonian (10.65) is

not translationally invariant but we need only terms diagonal in ~k). The

second-order correction containing the mass term is

Ŝ
2ð Þ ~k;~k;E
� �

¼
X

~k
0

Ŵ~k ~k
0 Ĝ0

~k
0
;E

� �

Ŵ~k
0 ~k; ð10:71Þ

262 Gauge fields and strain engineering

              

       



where

Ŵ~q ¼ V~q þ ~̂s~A~q ð10:72Þ

and Ĝ0 is given by Eq. (4.36). We are interested in the gap opening at the

neutrality point and thus should put E¼ 0. By substituting Eq. (4.36) into

Eq. (10.71) we find

Ŝ
2ð Þ ~k;~k; 0
� �

¼ 1

hv

X

~q

Ŵ~k ~q

~q~̂s

q2
Ŵ~q ~k: ð10:73Þ

Since

Ŵŝa ¼ Vŝa þ Aa þ iebagA
bŝg ð10:74Þ

the expression (10.73) contains the gap term, Dŝz, where

D~k ¼
2

hv

X

~q

Im V~k ~q qxA
y

~q ~k
qyA

x

~q ~k

� �h i

q2
: ð10:75Þ

At ~k ¼ 0, it can be expressed in terms of the Fourier component of the

pseudomagnetic field,

B~k ¼ kxA
y
~k

kyA
x
~k
; ð10:76Þ

namely

D~k 0
¼ 2

hv

X

~q

Im V ~qB~q

	 


q2
ð10:77Þ

(Low, Guinea & Katsnelson, 2011).

Before discussing this expression we derive an important result for qŜ=qE.

It follows from Eqs. (10.73) and (4.36) that

qS
2ð Þ ~k;~k;E
� �

qE

�

�

�

�

�

�

E 0

¼
X

~q

Ŵ~k ~qŴ~q ~k

hvqð Þ2
: ð10:78Þ

The integral (10.78) contains an infrared divergence at q! 0, which should be

cut, at some qmin. The result is

qS
2ð Þ ~k;~k;E
� �

qE

�

�

�

�

�

�

E 0

� ln qminað Þj j
2p hvð Þ2

Ŵ~kŴ ~k: ð10:79Þ
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This divergence is very important for the theory of electron transport in

graphene, as will be discussed in the next chapter.

It follows from Eq. (10.77) that the gap is determined by correlations

between the electrostatic potential and the pseudomagnetic field. Let us

characterize these correlations by a parameter

C ¼ lim
~k!0

BVð Þ~k; ð10:80Þ

which has the dimension of energy. It is roughly given by the value of the

electrostatic potential times the number of flux quanta of the pseudomagnetic

field over the region where the field and the electrostatic potential are correl-

ated. The gap can be estimated, according to Eq. (10.77), as

D � C ln qminað Þj j: ð10:81Þ

The minimal value of q in pure graphene is determined by the gap itself,

qmin �
D

hv
; ð10:82Þ

so Eq. (10.81) is an equation for D. In dirty samples, the cut-off is determined

by disorder.

Since the ripples create both an electrostatic potential and a vector poten-

tial it is natural to ask whether this effect can result in gap opening or not. To

check this, we will use the expression for the deformation tensor created by

ripples with the in-plane relaxation taken into account (Guinea, Horowitz &

Le Doussal, 2008):

uab ~k
� �

¼
~k
�

�

�

�

�

�

2

2
dab

lþm
lþ2mkakb

2

6

4

3

7

5

k2x fyy
~k
� �

þk2y fxx ~k
� �

2kxky fxy ~k
� �

~k
�

�

�

�

�

�

4
ð10:83Þ

(cf. Eq. (10.26) for the magnetic field). On substituting Eqs. (10.83), (10.7)

and (10.8) into Eq. (10.77) we obtain (Low, Guinea & Katsnelson, 2011)

D¼g1
b

a

m lþmð Þ
lþ2mð Þ2

X

~k

k2x fyy
~k
� �

þk2y fxx ~k
� �

2kxky fxy ~k
� ��

�

�

�

�

�

2

~k
�

�

�

�

�

�

4
cos 3j~k

� �

; ð10:84Þ

where j~k is the polar angle of the vector ~k. This expression is zero since on

making the replacement ~k! ~k the cosine changes sign (j ~k ¼ pþ j~k) and

fabð ~kÞ ¼ fab

ð~kÞ (since the expression (10.24) is real). This means that, while

the scalar and vector potentials originate from the same deformations, the gap

264 Gauge fields and strain engineering

              

       



is not open. To achieve gap opening one needs to apply an inhomogeneous

electrostatic potential, together with strains. Some specific devices of such

a kind were considered by Low, Guinea & Katsnelson (2011). Under some

quite realistic assumptions about parameters of the devices, a gap of the order

of 0.1 eV can reasonably be expected. In general, this direction in strain

engineering looks quite promising.

In this chapter we have considered only the simplest gauge field, that is,

a pseudomagnetic one, which can be created by smooth deformations.

Topological defects in graphene such as dislocations and disclinations can

create non-Abelian gauge fields acting on two valleys. This issue and more

formal aspects of gauge fields in graphene are reviewed by Vozmediano,

Katsnelson & Guinea (2010).
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11

Scattering mechanisms and transport properties

11.1 The semiclassical Boltzmann equation and limits of its applicability

The conventional theory of electronic transport in metals and semiconductors

(Ziman, 2001) is based on the Boltzmann equation (or kinetic equation) for

the distribution function f ~k;~r; t
� �

, which is nothing other than a probability

density in the single-electron phase space (instead of the canonical variables~p

and~r we will use ~k and~r, ~k ¼ ~p=h). It has the form (Ziman, 2001; Abrikosov,

1988; Vonsovsky & Katsnelson, 1989; Lifshitz, Azbel & Kaganov, 1973)

qf

qt
þ _~kr~k fþ _~rr~r f ¼ I~k f½ �; ð11:1Þ

where
_~k and _~r are determined by the canonical equations of motion

h
_~k ¼ e ~Eþ 1

c
~v~k 	~B

� �

; ð11:2Þ

_~r ¼~v~k ¼
1

h

qe ~k
� �

q
~k

; ð11:3Þ

where e ~k
� �

is the band dispersion and ~E and ~B are the electric and magnetic

fields. The right-hand side of Eq. (11.1) is called the collision integral. If we neglect

electron electron scattering processes and assume that there is only elastic

scattering by some external (with respect to the electron subsystem) sources

the collision integral takes the form

I~k f½ � ¼
X

~k
0

w ~k; ~k
0

� �

f~k 0 1� f~k
� �

� f~k 1� f~k 0
� �	 


¼
X

~k
0

w ~k; ~k
0

� �

f~k 0 � f~k
� �

; ð11:4Þ

where w ~k; ~k
0

� �

is the quantum-mechanical scattering probability and the

factors (1 f ) in Eq. (11.4) take into account the Pauli principle forbidding
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scattering into occupied states. One can see, however, that these factors are

not essential. If the scattering Hamiltonian has the form

Ĥ
0 ¼
X

~k~k
0

V~k~k
0 ĉ~k
þĉ~k 0 ð11:5Þ

then, in the Born approximation, according to ‘Fermi’s golden rule’,

w ~k; ~k
0

� �

¼ 2p

h
V~k~k

0
�

�

�

�

2
D E

d e~k e~k 0
� �

ð11:6Þ

(angular brackets denote the average over the states of the scatterers). Note

that in this approximation wð~k; ~k 0Þ ¼ wð~k 0; ~k Þ, which is already taken into

account in Eq. (11.4). For simplicity, we omit spin indices and do not take

into account summation over them; otherwise, the right-hand side of Eq. (11.4)

should be multiplied by 2, the spin degeneracy factor.

We will consider here only a linear response, assuming that the external

electric field ~E is small enough. Then,

f~k ~r; tð Þ ¼ f0 e~k
� �

þ df~k ~r; tð Þ; ð11:7Þ

where f0(e) is the Fermi Dirac distribution function, and we need to take into

account only linear terms in Eq. (11.1). Then, the collision integral is

I~k f½ � ¼
X

~k
0

w ~k; ~k
0

� �

df~k 0 df~k
� �

: ð11:8Þ

The current and the perturbation of the electron charge density can be

calculated as

~j ~r; tð Þ ¼ e
X

~k

~v~k df~k; ð11:9Þ

dr ~r; tð Þ ¼ e
X

~k

df~k: ð11:10Þ

The rigorous quantum-mechanical derivation of the Boltzmann equation

from fundamental physical laws, that is, from the Schrödinger equation, is

a very complicated problem. It is part of the general problem of the deriv-

ation of statistical physics and of macroscopic irreversibility (the Boltzmann

equation is irreversible; that is, it has no time-reversal symmetry, whereas the

Schrödinger equation does have time-reversal symmetry), see, e.g., Zubarev

(1974), Ishihara (1971) and Balescu (1975). For the particular case of elastic

scattering with randomly distributed impurities,
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V ~rð Þ ¼
X

i

u ~r ~Ri

� �

ð11:11Þ

(~Ri are their positions), the problem was solved by Kohn & Luttinger (1957).

The idea was the following. First, the Schrödinger equation is equivalent to

the equation (2.173) for the density matrix

r~k;~k
0 ¼ ĉþ~k 0 ĉ~k

D E

ð11:12Þ

(cf. Eq. (2.170)). For the case of a spatially uniform system,

f~k ¼ r~k;~k : ð11:13Þ

One can prove that, if V is weak enough, the off-diagonal terms of the density

matrix (11.12) are small in comparison with the diagonal ones, with the latter

satisfying the Boltzmann equation (11.1) and (11.4) and (11.6). Assuming a

random distribution of the impurities, one has

V~k~k
0

�

�

�

�

2
D E

¼ nimp u~k ~k
0

�

�

�

�

2
; ð11:14Þ

where nimp is the impurity concentration. Luttinger & Kohn (1958) proved

that if nimp is small one can repeat the whole derivation without assuming the

smallness of potential u, and Eqs. (11.1), (11.4) and (11.6) remain correct, but

with replacement of the potential û by the single-site T̂-matrix:

V~k~k
0

�

�

�

�

2
D E

¼ nimp T~k~k
0 E ¼ e~k
� ��

�

�

�

2
: ð11:15Þ

This result has already been mentioned and used in Chapter 6.

If neither the potential nor the concentration of the defects is small, the

Boltzmann equation is, in general, incorrect. For example, it does not take

into account the effects of Anderson localization which are crucially

important for strongly disordered systems (Lifshitz, Gredeskul & Pastur,

1988; Mott, 1974; Mott & Davis, 1979; Shklovskii & Efros, 1984).

Some general and powerful tools with which to derive kinetic equations,

such as Kadanoff Baym nonequilibrium Green functions and the Keldysh

diagram technique for their calculation (Kadanoff & Baym, 1962; Keldysh,

1964; Rammer & Smith, 1986; Wagner, 1991; Kamenev & Levchenko, 2009)

and the nonequilibrium statistical operator (NSO) method and similar

approaches (Zubarev, 1974; Kalashnikov & Auslender, 1979; Akhiezer &

Peletminskii, 1981; Luzzi, Vasconcellos & Ramos, 2000; Kuzemsky, 2005)

were developed thereafter. They are all based on the idea of a coarse-grained

description. If the disorder is weak (due to either weakness of the scattering

potential or smallness of the concentration of defects) the off-diagonal elements
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of the density matrix have a very fast dynamics in comparison with that of the

diagonal ones and can be eliminated. On time scales much larger than typical

electron times (e.g., h= tj j, where t is the hopping integral) the dynamics of

the whole system can be described by a small number of degrees of freedom

(we have N0 diagonal elements (11.13) and N0
2 elements of the total density

matrix (11.12)). If there are no small parameters in the problem under

consideration the coarse-grained approach cannot be justified and one needs

other methods (see, e.g., Efetov, 1997; Evers & Mirlin, 2008).

Above we discussed the case of a spatially uniform system. If we have

inhomogeneities on an atomic scale and no small parameters, the kinetic

equation does not work. For the case of smooth enough inhomogeneities

the Boltzmann equation (11.1) can be justified for the Wigner distribution

function

f~k ~r; tð Þ ¼
ð

d~x exp i~k~x
� �

r ~rþ
~x

2
;~r

~x

2
; t

 !

; ð11:16Þ

where r ~r;~r 0ð Þ ¼ ĉ
þ
~r 0ð Þĉ ~rð Þ

D E

is the density matrix in the coordinate repre-

sentation (Kadanoff & Baym, 1962). Henceforth we will not consider the

inhomogeneous case. We also restrict ourselves to the case of dc transport

with a time-independent ~E. Therefore, the terms with q/qt and r~r in Eq. (11.1)

can be neglected.

For the case of graphene, the applicability of the Boltzmann equation is

not obvious. In the standard theory of electron transport in solids, the current

operator commutes with the unperturbed Hamiltonian Ĥ0, thus we start with

states that have simultaneously well-defined values of energy and well-defined

values of momentum. The perturbation Ĥ 0 does not commute with the current

operator, leading to scattering between these states. For the Dirac Hamiltonian

(3.1) the current operator (3.2) does not commute with it (Zitterbewegung,

see Chapter 3). At the same time, for the case of a scalar potential

Ĥ0 ¼
X

~k~k
0

ĉ
þ
~k V~k~k

0ĉ~k
0 ð11:17Þ

the current operator commutes with Ĥ 0. It is not at all clear how important

this huge formal difference can be. Also, it is not clear when interband

scattering processes can be neglected; thus, at least, instead of the scalar

quantity (11.13) one needs to consider the matrix (7.15) in pseudospin space.

If we have atomically sharp scattering, also the valley index should be taken

into account, but we will not consider that case here. The matrix Boltzmann

equation for the case of graphene has been derived by Auslender & Katsnelson
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(2007) (see also Kailasvuori & Lüffe, 2010; Trushin et al., 2010). They used the

NSO approach; Kailasvuori & Lüffe (2010) used the Keldysh diagram tech-

nique and discussed the relation between these two approaches.

The corresponding derivations are rather complicated and cumbersome,

but the physical results are quite clear. Here we present therefore only the

general idea and the answers.

First, let us diagonalize the Dirac Hamiltonian by the transformation

(7.23) to the form (7.24). The scattering operator (11.5) takes the form

Ĥ 0 ¼
X

~k~k
0

X̂

þ
~kV
0
~k~k
0X̂~k

0 ; ð11:18Þ

where X̂þ~k ¼ x̂
þ
~k1;x̂

þ
~k2

� �

and

V~k~k
0 ! V 0~k~k 0 ¼

1

2
V~k~k

0
1þ exp i j~k

0 � j~k

� �	 


1� exp i j~k
0 � j~k

� �	 


1� exp i j~k � j~k
0

� �	 


1þ exp i j~k
0 � j~k

� �	 


 !

: ð11:19Þ

It contains both diagonal and nondiagonal elements. In the NSO method one

needs first to postulate the set of ‘coarse-grained’ variables for which a closed

set of equations of motion is assumed to exist. In our case, this is the 2	 2

density matrix X̂

þ
~k X̂~k

D E

or, equivalently,

D~k ¼ x̂
þ
~k1 x̂~k1

D E

þ x̂
þ
~k2x̂~k2

D E

1;

N~k ¼ x̂
þ
~k1x̂~k1

D E

þ 1 x̂
þ
~k2x̂~k2

D E

;

g~k ¼ x̂
þ
~k1x̂~k2

D E

¼ x̂
þ
~k2x̂~k1

D E

:

ð11:20Þ

Note that the function g~k is complex. The generalized Boltzmann equation to

second order in V reads (Auslender & Katsnelson, 2007)

qD~k

qt
þ eE

h

qD~k

qkx
¼ 2p

h

X

~q

V~k;~q

�

�

�

�

�

�

2

cos2
j~k j~q

2

� �

d e~k e~q
� �

D~k D~q

� �

; ð11:21Þ

qN~k

qt
þ eE

qN~k

qkx

2eE sinj~k

hk
Im g~k

¼ 2p

h

X

~q

V~k;~q

�

�

�

�

�

�

2 1

p

�

sin j~k j~q

� �

Re g~q
1

e~q þ e~k
þ 1

e~q e~k

� �

cos2
j~k j~q

2

� �

N~k N~q

� �

þ sin j~k j~q

� �

Im g~q

h i




d e~k e~q
� �

; ð11:22Þ
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qg~k
qt

2ivkg~k þ
eE

h

qg~k
qkx
þ iE

2hk
N~k 1
� �

sinj~k

¼ p

h

X

~q

V~k;~q

�

�

�

�

�

�

2 i

2
sin j~k j~q

� �

D~q d e~k e~q
� �

þ i

p

1

e~k e~q

� ��

þ 2 cos2
�

j~k j~q

2

�

g~k g~q
� �

d e~k e~q
� �

þ i

p

g~k þ g~q

e~k e~q

� �

þ 1

2p

N~q

e~k þ e~q
sin j~k j~q

� � 2i

p

g~k þ g
~q
e~k þ e~q

sin2
�

j~k j~q

2

�


;

ð11:23Þ

where e~k ¼ hvk and the electric field E is supposed to be directed along the

x-axis. The current is expressed in terms of these functions as

jx ¼ ev
X

~q

N~q cosj~q þ 2 sinj~q Im g~q

� �

: ð11:24Þ

The equation (11.21) is decoupled from Eqs. (11.22) and (11.23) and is

formally equivalent to the usual Boltzmann equation (11.1), (11.4) and

(11.6), but the other two equations have an essentially different structure.

The most important difference is that the ‘collision integral’ contains now not

only ‘dissipative’ terms with d e~k e~q
� �

but also ‘reactive’ termswith 1=ðe~k � e~qÞ.
These terms are associated with virtual interband transitions, that is, with

Zitterbewegung (see Chapter 3). As a result, the linearized kinetic equations

are singular, and their solutions contain logarithmic divergences at small enough

chemical potential m and temperature T. For the case of the contact potential,

V~k;~q ¼ constant, these integral equations can be solved exactly (Auslender &

Katsnelson, 2007).

First, let us neglect off-diagonal terms, that is, g~k. Then we will have the

standard Boltzmann equation for the Dirac fermions and the corresponding

expression for the resistivity (6.23) with the inverse Drude mean-free-path

time (Shon & Ando, 1998)

1

t~k
¼ p

h

X

~q

V~k;~q

�

�

�

�

�

�

2

sin2 j~k j~q

� �

d e~k e~q
� �

¼ pe~k

2phvð Þ2
nimp

ð

2p

0

dj u 2k sin
j

2

� �� ��

�

�

�

�

�

2

sin2j; ð11:25Þ

where u(q) is the Fourier component of u(r) from Eq. (11.11).
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If we now find the off-diagonal terms of the density matrix, g~k, by iterations

we will see that they have a smallness in the parameter

l ¼ h

eFj jt kFð Þ
� e2rB

h
ð11:26Þ

where rB is the resistivity (6.23) and (11.25) calculated by applying the

ordinary semiclassical Boltzmann equation. If we go closer to the neutrality

point the off-diagonal terms are divergent. For the case of the contact

potential the exact solution of the integral equations mentioned above gives

a typical energy scale (Auslender & Katsnelson, 2007)

eK ¼W exp
ph

e2rB

� �

; ð11:27Þ

where W is a cut-off energy of the order of the bandwidth. The conventional

Boltzmann equation is valid if

eFj j;T� eK: ð11:28Þ

The subscript K in Eq. (11.27) refers to Kondo, due to a formal similarity

between the energy scale discussed here and the Kondo effect in the scattering

of electrons in metals by a magnetic impurity (Kondo, 1964; Hewson, 1993).

In that case, due to spin-flip processes involved in the scattering a resonant

singlet state is formed (‘Kondo resonance’), which, being considered pertur-

batively, leads to logarithmic corrections in the temperature dependences of

various physical quantities. It is important that the spin-up and spin-down

states of the impurities are degenerate. A magnetic field kills this degeneracy

and suppresses the Kondo effect. The scattering potential (11.19) contains

off-diagonal matrix elements between electron and hole bands. At m¼ 0, these

bands are degenerate, and an analogue of the Kondo effect arises, making the

standard Born approximation insufficient. A finite chemical potential m plays

the same role as the magnetic field in the Kondo effect. The condition (11.28)

guarantees that all singularities are suppressed. One can see that this is

equivalent to the condition

l� 1; ð11:29Þ
which is the desired criterion of applicability of the standard semiclassical

Boltzmann theory. In the vicinity of the neutrality point we are in the ‘strong-

coupling’ regime. Note that Eqs. (11.21) (11.23) are probably insufficient in

this case. As was emphasized above, in the situation without any smallness of

disorder other methods have to be applied. They will be briefly discussed later

in this chapter (Section 11.6). The main role of the approach considered here
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is that it justifies the use of the standard Boltzmann equation under the

condition (11.29).

Note that these ‘Kondo’ logarithms are related to the divergence of qS/qE

at the neutrality point, Eq. (10.79). From another point of view and in a

different context (Dirac fermions in d-wave superconductors) these logarithms

were discussed by Lee (1993), Nersesyan, Tsvelik & Wenger (1994) and Ziegler

(1998).

Thus, not too close to the neutrality point, namely at

s ¼ 1

r
� e2

h
; ð11:30Þ

the interband transitions are negligible. If we assume, to be specific, that the

Fermi energy lies in the electron band then only the (1, 1) matrix element of

the current operator and that of the scattering potential are relevant:

j~kx

� �

1;1
¼ ev cosj~k; ð11:31Þ

V 0~k~k 0
� �

1;1
¼ V~k~k

0
1þ exp i j~k

0 j~k

� �	 


2
: ð11:32Þ

Let us consider the most general form of the scattering potential V~k~k
0 in

Eq. (11.17):

V~k~k
0 ¼ V

0ð Þ
~k~k
0 þ ~V~k~k

0~s: ð11:33Þ

Then, the effective scattering potential will be

V eff
~k~k
0 ¼ V 0~k~k 0
� �

1;1

¼ V
0ð Þ
~k~k
0
1þ exp i j~k

0 j~k

� �	 


2
þ V z

~k~k
0
1 exp i j~k

0 j~k

� �	 


2

þ Vx
~k~k
0 þ iV

y
~k~k
0

� �

exp ij~k

� �

þ Vx
~k~k
0 iV

y
~k~k
0

� �

exp ij~k
0

� �

: ð11:34Þ

Thus, under the condition (11.30) we have a single-band problem with the

unperturbed Hamiltonian

Ĥ0 ¼
X

~k

hvkx̂
þ
~k x̂~k; ð11:35Þ

current operator

ĵx ¼
X

~k

ev cosj~k x̂
þ
~k x̂~k ð11:36Þ
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and scattering operator

Ĥ0 ¼
X

~k

V eff
~k~k
0x̂
þ
~k x̂~k 0 ; ð11:37Þ

where we will omit the label ‘1’ for electron operators. In the next section we

will present a convenient and general tool by means of which to find the

resistivity in this problem.

11.2 The Kubo–Nakano–Mori formula for resistivity

In general, the linearized Boltzmann equation is an integral equation that

can be solved exactly only in some special cases (e.g., for contact interaction

u ~r ~R1

� �

in Eq. (11.11)). Usually, a variational approach (Ziman, 2001)

is used. However, within the Born approximation there is a more straight-

forward way to calculate transport properties. It is based on the use of the

Kubo Nakano Mori formula (Kubo, 1957; Nakano, 1957; Mori, 1965) for

the resistivity. It gives exactly the same result as the solution of Boltzmann

equation by the variational approach but in a technically simpler way. Since

this method seems not to be well known in graphene community, we will

present it here following Mori (1965). It will allow us also to illustrate the idea

of coarse graining, which is fundamental for the nonequilibrium statistical

mechanics which was discussed preliminarily in the previous section.

Let us start with the Kubo formula (3.7) for sxx. It can be rewritten as

sxx oð Þ ¼ b

ð

1

0

dt exp iotð Þ ĵx tð Þ; ĵx
� �

; ð11:38Þ

where

Â; B̂
� �

¼ 1

b

ð

b

0

dl exp lĤ
� �

Â exp lĤ
� �

B̂
þD E

: ð11:39Þ

Ĥ is the Hamiltonian of the system and we put the area of the sample equal to

one. Importantly, if we consider operators {Â} as vectors in some linear space,

Eq. (11.39) determines the scalar product in this space and satisfies all of the

axioms of the scalar product.

The operator equation of motion is

dÂ tð Þ
dt
¼ iL̂Â tð Þ; ð11:40Þ
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where

L̂Â � Ĥ;Â
	 


ð11:41Þ

is the Liouville (super)operator. ‘Super’ means that it acts as an operator in

the vector space of quantum-mechanical Hermitian operators. Here we put

h ¼ 1 for simplicity.

Let us assume that {Â} form a set of operators such that their dynamics is

closed, that is, Â tð Þ
� �� �

at any time t is determined by initial conditions

Â 0ð Þ
� �� �

� Â
� �� �

. This implies the coarse-grained dynamics. A technical

advantage of Mori’s approach is that we use far fewer operators than in the

kinetic equation, just current operators, but with almost the same accuracy.

Since Eq. (11.39) defines the scalar product in our vector space, one can

introduce a projection operator of any set of operators {Ĝ} on the initial set {Â}:

P̂0Ĝ ¼ Ĝ;Â
� �� Â;Â� � 1�Â; ð11:42Þ

where the dot denotes the matrix product, e.g.,

Ĝ;Â
� ��Â	 


i
¼
X

j

Gi;Âj

� �

Âj ð11:43Þ

and i and j label operators within the set {Â}. Thus, Â(t) can be represented as

a sum of ‘projective’ and ‘perpendicular’ components with respect to {Â}:

Â tð Þ ¼ X0 tð ÞÂþ Â0 tð Þ; ð11:44Þ
where

X0 tð Þ ¼ Â tð Þ;Â
� �� Â;Â� � 1 ð11:45Þ

and

Â0 tð Þ ¼ 1 P̂0

� �

Â tð Þ: ð11:46Þ

Next, we can derive the equation of motion for Â 0. Acting by 1 P̂0

� �

on

Eq. (11.40) we find

dÂ0 tð Þ
dt

iL̂1Â0 tð Þ ¼ X0 tð Þf̂1; ð11:47Þ

where

L̂1 ¼ 1 P̂0

� �

L̂; ð11:48Þ

f̂1 ¼ iL̂1Â: ð11:49Þ
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It has the formal solution

Â0 tð Þ ¼
ð

t

0

dsX0 sð Þf̂1 t sð Þ; ð11:50Þ

where we take into account that Â 0(0)=0 and

f̂1 tð Þ ¼ exp iL̂1t
� �

f̂1: ð11:51Þ
Equation (11.50) represents a convolution. On taking the Laplace transform

Â zð Þ ¼
ð

1

0

dt exp ztð ÞÂ tð Þ ð11:52Þ

we find

Â zð Þ ¼ X0 zð Þ� Âþ f̂1 zð Þ
h i

: ð11:53Þ

As the next step we have to repeat the procedure for f̂1. It satisfies the

equation of motion

df̂1
dt
¼ iL̂1 f̂1: ð11:54Þ

We can reproduce it as

f̂1 tð Þ ¼ X1 tð Þ � f̂1 þ f̂ 01 tð Þ; ð11:55Þ
where

X1 tð Þ ¼ f̂1 tð Þ; f̂1
� �

� f̂1; f̂1

� � 1

ð11:56Þ

and

f̂ 01 tð Þ ¼ 1 P̂1

� �

f̂1 tð Þ; ð11:57Þ

where P̂1 is the projection operator onto f̂1

n o

. Further, we will have for the

Laplace transform,

f̂1 zð Þ ¼ X1 zð Þ � f̂1 þ f̂2 zð Þ
h i

; ð11:58Þ

which is similar to Eq. (11.53) and where

f̂2 tð Þ ¼ exp iL̂2t
� �

iL̂2 f̂1; ð11:59Þ

L̂2 ¼ 1 P̂1

� �

L̂1: ð11:60Þ
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Treating f̂2 in a similar way, we introduce a new object f̂3, etc., so that we will

have a set of quantities f̂j tð Þ
n o

f̂0 ¼ Â
� �

defined iteratively as

f̂j tð Þ ¼ exp iL̂jt
� �

iL̂j f̂j 1; ð11:61Þ

where

L̂j ¼ 1 P̂j 1

� �

L̂j 1; L̂0 ¼ L̂ ð11:62Þ
and P̂j is the projection operator onto f̂j

n o

. The Laplace transforms of f̂j
satisfy the chain of equations

f̂j zð Þ ¼ Xj zð Þ� f̂j þ f̂jþ1 zð Þ
h i

: ð11:63Þ

As a result, we derive a continued-fraction representation of the correlators

(Mori, 1965):

X0 zð Þ ¼ 1

z io0 D
2
0X1 zð Þ

; ð11:64Þ

X1 zð Þ ¼ 1

z io1 D
2
1X2 zð Þ

ð11:65Þ

etc., where

ioj ¼ _fj; fj

� �

� fj; fj
� � 1

; ð11:66Þ

D
2
j ¼ fj; fj

� �� fj 1; fj 1

� � 1
: ð11:67Þ

Let us apply this general scheme to the conductivity. We have to choose as the

first step Â ¼ ĵx; ĵy
� �

. Next, we have to calculate o0. This can easily be done

using the identity

_̂A; B̂
� �

¼ i

b

ð

b

0

dl exp lĤ
� �

Ĥ;Â
	 


exp lĤ
� �

B̂þ
� �

¼ i

b

ð

b

0

dl
d

dl
exp lĤ
� �

Â exp lĤ
� �

B̂þ
� �

¼ i

b
exp bĤ
� �

Â exp bĤ
� �

B̂þ
� �

ÂB̂þ
� �	 


¼ i

b
B̂þ;Â
	 
� �

; ð11:68Þ
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where we take into account that

Â
� �

¼ Tr exp bĤ
� �

Â
	 


=Z ð11:69Þ

and implement the cyclic permutation under the trace symbol.

In the absence of a magnetic field, the average values of all of the commu-

tators of the current operator are zero (in particular, ŝzh i ¼ 0), so one can

conclude that o0¼ 0. Also, one can conclude by symmetry arguments that

ja; jb
� �

¼ dab jx; jxð Þ: ð11:70Þ

Let us stop the procedure at the first step, neglecting f̂2 and all higher-order

terms. Then, the result for the conductivity (11.38) will be

sxx oð Þ ¼ b jx; jxð Þ
ioþ 1= jx; jxð Þ ĵx; Ĥ

	 


; Ĥ; ĵx
	 
� �

z io

: ð11:71Þ

Since within the single-band approximation (11.35) (11.37) the current oper-

ator commutes with Ĥ0, one can replace ĵx; Ĥ
	 


by ĵx; Ĥ
0h i

in Eq. (11.71). As

a result, Eq. (11.71) takes the form

sxx oð Þ ¼ b jx; jxð Þ
ioþ 1=t oð Þ ; ð11:72Þ

where

1

t oð Þ ¼
1

jx; jxð Þ

ð

1

0

dt exp iotð Þ Fx t ilð Þ;Fþx
� �

ð11:73Þ

and

Fx ¼ ĵx; Ĥ
0	 


: ð11:74Þ

To calculate ( jx, jx) one can neglect the scattering operator Ĥ 0. Then, taking
into account that ĵx; Ĥ0

	 


¼ 0; we have

jx; jxð Þ ¼ j2x
� �

: ð11:75Þ
By substituting Eq. (11.38) into Eq. (11.75) and using Wick’s theorem we find

jx; jxð Þ ¼
X

k

e2v2 cos2jk x̂
þ
k1x̂k1

D E

x̂k1x̂
þ
k1

D E

¼
X

k

e2v2 cos2jk f ekð Þ 1 f ekð Þ½ �

¼ 1

2b

X

k

e2v2
qf ekð Þ
qek

� �

; ð11:76Þ
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where we average cos2jk ! 1
2
. At T� eFj j the result is

b jx; jxð Þ ¼ e2
N eFð Þv2

2
: ð11:77Þ

On comparing Eqs. (11.72) and (11.77) with Eq. (6.23) one can see that

Eq. (11.72) is nothing other than the Drude formula, and t(o¼ 0) given by

Eq. (11.73) is nothing other than the mean-free-path time. At o¼ 0 it can be

simplified, similarly to the transformation from Eq. (3.7) to Eq. (3.8):

1

t
¼ 1

2 j 2x
� �

ð

1

1

dt Fx tð ÞFþx
� �

: ð11:78Þ

This, together with Eq. (6.23), gives us the Kubo Nakano Mori formula for the

resistivity. As has already been mentioned it is equivalent to the solution of the

semiclassical Boltzmann equation by the variational approach (Ziman, 2001).

By substituting Eqs. (11.36) and (11.37) into Eqs. (11.74) and (11.78) and

calculating the average using Wick’s theorem we find, finally (we restore here

the Planck constant), the expression for the momentum relaxation rate of

Dirac fermions:

1

t
¼ 2p

hN eFð Þ
X

~k~k
0

d e~k eF
� �

d e~k 0 eF
� �

cosj~k cosj~k
0

� �2
V eff

~k~k
0

�

�

�

�

�

�

2

ð11:79Þ

Together with Eq. (11.34), this allows us to analyze various scattering

mechanisms.

11.3 Scattering mechanisms in graphene on a substrate

There are two fundamental experimental facts about the conductivity of

graphene on a substrate. First, the dependence of the conductivity on the

charge-carrier concentration n typically has a V-shape (Novoselov et al., 2004,

2005a; Zhang et al., 2005). If we introduce the mobility m via the relation

s ¼ nem ð11:80Þ

this means that m is weakly dependent on the concentration and s � n except

in the close proximity of the neutrality point. Typical results (Novoselov

et al., 2005a) are shown in Fig. 11.1 (note that n is proportional to the gate

voltage). This behaviour has been confirmed by numerous works by many

experimental groups and seems to be universal. It does not depend on the

type of substrate, but the value of m does. Whereas for graphene on SiO2 one
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typically has m� 104 cm2 V 1 s 1 (Novoselov et al., 2004, 2005a; Zhang et al.,

2005), for graphene on hexagonal BN m can be an order of magnitude higher

(Dean et al., 2010).

Second, for graphene on a substrate the temperature dependence of con-

ductivity is extremely weak. If one tries to separate ‘extrinsic’ (due to defects)

and ‘intrinsic’ (e.g., due to electron phonon interaction) contributions to the

mobility using Matthiessen’s rule (Ziman, 2001)

1

m Tð Þ ¼
1

mext
þ 1

mint Tð Þ
ð11:81Þ

assuming that mext is temperature-independent and mint (T)! 0 at T! 0, one

finds mint� (2 4)	 105 cm2 V 1 s 1 (Morozov et al., 2008), which means that

the difference in conductivity between T� 0 and room temperature is no

more than a few per cent. We postpone the discussion of this temperature

dependence until the next section and focus here on the origin of mext.

Importantly, the concentration and temperature dependences of the con-

ductivity for bilayer graphene are more or less the same as for single-layer

graphene (Novoselov et al., 2006). To discuss this case we will use the same

semiclassical Boltzmann equation as for the case of single-layer graphene, the

only differences being in the dispersion law and the transformation to electrons

–100 –50 0 10050

Vg (V)

s
 (

k
Ω

–
1
)

0

2

3

1

Fig. 11.1. The dependence of the conductivity of graphene on the gate
voltage Vg � n. (Reproduced with permission from Novoselov et al., 2005a.)
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and holes (jk! 2jk in Eqs. (11.19) and (11.34)). In both cases, the inverse

relaxation time (11.79) can be estimated as

1

t
� 2p

h
N eFð Þ V kFð Þj j2; ð11:82Þ

where V kFð Þ is a typical value of V eff
~k~k
0 at ~k

�

�

�

�

�

� � ~k
0

�

�

�

�

�

� � kF. On substituting

Eq. (11.82) into the Drude formula (11.72) and (11.77) we find

s nð Þ� v2F

V kFð Þj j2
; ð11:83Þ

where vF¼ v¼ constant for the case of single-layer graphene and

vF ¼
hkF

m
� n1=2 ð11:84Þ

for the case of bilayer graphene. This means that, to explain the experimen-

tally observed behaviour s(n), one needs to assume

V kFð Þj j2 � constant ð11:85Þ

for the case of bilayer graphene and

V kFð Þj j2 � 1

k2F
ð11:86Þ

for the case of single-layer graphene.

For randomly distributed defects, one needs to use Eq. (11.14) (assuming

the Born approximation) or the more accurate Eq. (11.15) (assuming only a

low concentration of defects). In the latter case, the answer can be expressed

in terms of scattering phases; see Eqs. (6.23) (6.26) for the case of single-layer

graphene and Eq. (6.54) for the case of bilayer graphene.

Up to now we have not taken into account the screening effects (see

Section7.7).Within theRPA, the scalar potentialV
0ð Þ

~k~k
0 inEq. (11.34) is replacedby

V
sð Þ

~k~k
0 ¼

V
0ð Þ

~k~k
0

e q ¼ ~k ~k0
�

�

�

�

�

�;o ¼ 0
� � : ð11:87Þ

Beyond the RPA, so-called vertex corrections should be taken into account,

but we will not discuss them here; just for estimations this simple theory will

suffice. At the same time, there is no screening of the vector potential ~V~k~k 0

(Gibertini et al., 2010).

Let us restrict ourselves to the case of the scalar potential only and use

Eq. (11.14). Thus, Eq. (11.79) will take the form (11.25), with the replacement

11.3 Scattering mechanisms in graphene on a substrate 281

              

       



u(q)¼ u(q)/e(q). On introducing the new variable x¼ sin(j/2) one can rewrite

this equation as

1

t kFð Þ
¼ 4kF

phv
nimp

ð

1

0

dx x2 1 x2
p u 2kFxð Þ

e 2kFx; 0ð Þ

�

�

�

�

�

�

�

�

2

: ð11:88Þ

Note that only e(q, 0) with q< 2kF is involved in Eq. (11.88). In this regime, the

RPA coincides with the Thomas Fermi approximation (see Eq. (7.107)), thus

e 2kFx; 0ð Þ ¼ eext þ
2e2

hv

1

x
ð11:89Þ

and does not depend on kF.

The behaviour (11.86) is provided by Coulomb impurities, where

u qð Þ ¼ 2pZe2

q
: ð11:90Þ

Moreover, it takes place also with the replacement of the potential u by the

T-matrix, see Eqs. (8.18) and (8.19). Therefore it is very natural to assume

that charge impurities determine the electron mobility in graphene on a

substrate (Nomura & MacDonald, 2006; Ando, 2006; Adam et al., 2007;

Peres, 2010; Das Sarma et al., 2011). Quantitative estimations for the case of

graphene on SiO2 (eext� 2.5) give (Adam et al., 2007)

s nð Þ � 20e2

h

n

nimp

; ð11:91Þ

where four current channels (two spins and two valleys) are taken into account.

Indeed, an intentional addition of charge impurities (potassium adatoms)

to graphene leads to a decrease of the electron mobility, in good agreement

with the theory described above (Chen et al., 2008). At the same time, there is

convincing experimental evidence that this is not the main factor restricting

electron mobility in standard exfoliated graphene samples on a substrate.

The main argument is that the electron mobility is relatively weakly

changed in an environment with a high dielectric constant and, thus, very

large eext, e.g., after covering graphene with water, ethanol or other polar

liquids, or when using substrates with large e (Ponomarenko et al., 2009).

In particular, the mobility in graphene on SrTiO3 (which has a dielectric

constant growing from e� 300 at room temperature to e� 5000 at liquid-

helium temperature) is of the same magnitude as that for graphene on SiO2

and very weakly dependent on temperature (Couto, Sacépé & Morpurgo,

2011). Of course, the screened Coulomb interaction in such a situation should

be strongly suppressed and strongly temperature-dependent.
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It was suggested by Katsnelson, Guinea & Geim (2009) that the reason

why charged adsorbate adatoms on graphene can be not very important for

the electron mobility is their strong tendency to form clusters. Indeed,

density-functional calculations (Wehling, Katsnelson & Lichtenstein, 2009b)

show that the more charged the adsorbate species the weaker its chemical

bond with graphene and the lower its migration barriers. This means that

strongly bonded and immobile adsorbates have very small charge transfer to

graphene and, thus, small effective Z, whereas impurities with Z� 1 can be

kept more or less randomly distributed only at low enough temperatures.

This was found to be the case for potassium atoms by Chen et al. (2008).

The clusterization suppresses the scattering cross-section per impurity by

orders of magnitude (Katsnelson, Guinea & Geim, 2009).

The above effect was confirmed experimentally by McCreary et al. (2010).

They deposited gold adatoms onto graphene and observed their clusterization,

with a simultaneous growth of the electron mobility.

Before discussing other possible scattering mechanisms we need to say a

few words about the case of bilayer graphene. Actually, for any isotopic two-

dimensional case the density of states at the Fermi energy is

N EFð Þ ¼ gvgs

2p

ð

1

0

dk kd eF e kð Þð Þ ¼ gsgv

2p

kF

hvF
ð11:92Þ

where

vF ¼
1

h

qe

qk

� �

k kF

ð11:93Þ

and we have restored the spin and valley degeneracy factors. As a result the

inverse screening radius is, instead of being given by Eq. (7.108) for single-

layer graphene,

k ¼ gsgv
e2kF

hvFeext
ð11:94Þ

and, thus,

e 2kFx; 0ð Þ ¼ eext þ
gsgve

2

hvF

1

2x
: ð11:95Þ

For the case of bilayer graphene, k� kF since vF! 0 at n! 0. Actually, this

is the case even for single-layer graphene if eext is not too large. Therefore, vF
is cancelled out from Eq. (11.83) and we have an estimation

s nð Þ � 1

nimp u kFð Þj j2
; ð11:96Þ
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which is valid both for single-layer and for bilayer graphene. This means that

for the same type of purely scalar potential scattering the concentration

dependence of the conductivity is the same. Strictly speaking, this is true only

within the Born approximation, and for the case of strong scatterers there will

be some difference (see below). The numerical coefficients can be different

since, in the case of bilayer graphene, one has to make the replacement

j! 2j in Eq. (11.32) and, as a result, the factor cos2(j/2) is replaced by

cos2j. Thus, for the same electron concentration and the same scatterers, the

ratio of the resistivity of single-layer graphene to that of bilayer graphene is

r1
r2
¼ F1

F2

; ð11:97Þ

where

F1 ¼
ð

1

0

dx x4 1 x2
p

u 2kFxð Þj j2;

F2 ¼
ð

1

0

dx x4 1 2x2
� �2

1 x2
p u 2kFxð Þj j2

(see Eqs. (11.88) and (11.95)).

Another potentially important source of electron scattering is ripples (see

Chapter 10). They create both a random vector potential (10.7) and a random

scalar potential (10.8). By substituting these expressions into Eq. (11.34) and

following the analysis of Sections 10.2 and 10.3 one finds that

V kFð Þj j2 � F q � kFð Þ; ð11:98Þ
where the correlation function F is given by Eq. (10.28). For intrinsic (thermally

induced) ripples one needs to use Eq. (10.29). Thus, for the case of not too small

doping, when

kF � q
 ð11:99Þ
one has (Katsnelson & Geim, 2008)

r � h

e2
T

ka

� �2
ln q
að Þj j

n
: ð11:100Þ

At room temperature, this has the correct 1/n dependence and corresponds to

the correct order of magnitude for the mobility, m � 104 cm2V 1 s 1. There are

two problems, however. First, the mobility is weakly temperature-dependent.

Katsnelson & Geim (2008) suggested therefore that there is a mechanism of
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freezing (quenching) of the ripples and hence that they keep the structure

corresponding to some quenching temperature Tq. If one makes the replace-

ment T!Tq of the order of room temperature in Eq. (11.100), it seems to

explain mext reasonably well.Moreover, if one assumes that the large-scale ripple

structure is frozen but flexural phonons can be excited within the ripples, it

can explain also the temperature dependence of mint (Morozov et al., 2008).

The weak temperature dependence of the ripple structure for graphene on

SiO2 has been confirmed by STM experiments (Geringer et al., 2009). How-

ever, the origin of this quenching is still unknown. It was suggested and

confirmed by density-functional calculations (Boukhvalov & Katsnelson,

2009b) that ripples can be stabilized by covalently bonded adatoms and

admolecules. San-José, González & Guinea (2011) proposed an intrinsic

mechanism of ripple stabilization that is based on the interactions of ripples

with conduction electrons. The absence of a detailed theory of the quenching

seems to be the weakest point of the idea that the ripples can be the main

limiting factor for electron mobility, whereas from the experimental point of

view this possibility cannot be excluded. Anyway, as will be discussed in the

next section, intrinsic ripples are probably the main limiting factor for the

electron mobility in freely suspended graphene samples.

Another important question within this scenario is that of whether the

frozen ripples on a substrate have the same structure as intrinsic ripples or

not. The results from the first two scanning-probe studies for graphene on

SiO2 (Ishigami et al., 2007; Stolyarova et al., 2007) indicated that these ripples

repeat approximately the roughness of the substrate, whereas in the later

work by Geringer et al. (2009) for the same system two types of ripples were

found: a first type following the roughness of the substrate and a second type

similar to the intrinsic ripples.

It is important to note that the first type seems to be irrelevant for the

electron mobility. Indeed, let us consider a general type of correlation function,

h ~rð Þ h 0ð Þ½ �2
D E

� r2H: ð11:101Þ

Then,

h~q
�

�

�

�

2
D E

� q 2 1þHð Þ ð11:102Þ

and for 2H< 1 the correlation function F(q) in (10.28) has a finite limit at

q¼ 0, thus,

V q ¼ 0ð Þj j2
D E

� hv

a

� �2
z4

R2
; ð11:103Þ
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where z and R are the characteristic height and radius of ripples, respectively.

This leads to a concentration-independent and very small contribution to the

resistivity,

r � h

4e2
z4

R2a2
: ð11:104Þ

For 2H> 1,

r � n1 2H
; ð11:105Þ

and for 2H¼ 1,

r � ln2 kFað Þ ð11:106Þ

(Katsnelson & Geim, 2008). For the roughness of the substrate, one could

expect 2H� 1 (Ishigami et al., 2007). Only frozen ripples with 2H� 2 (such

as intrinsic ripples at not too large distances r) are interesting as a scattering

mechanism.

Another important potential source of scattering is resonance scattering

(see Sections 6.5 and 6.6). They give a concentration dependence of the

conductivity that is very close to linear (see Eqs. (6.103)), that is, a weakly

concentration-dependent mobility

m � ln2 kFað Þ: ð11:107Þ

At least in some cases this reproduces the experimental data better than does

just constant mobility (Wehling et al., 2010a; Peres, 2010; Couto, Sacépé &

Morpurgo, 2011). This is certainly the case when vacancies are created in

graphene by ion bombardment (Chen et al., 2009), but, as discussed in

Section 6.5, it is very unlikely that there will be any vacancies in graphene if

they are not created intentionally. It was suggested by Wehling et al. (2010a)

that the resonant scatterers in real graphene samples could be due to the

formation of chemical C C bonds between graphene and organic pollutants

on it. Even a very small concentration of such bonds, <10 4, would be

sufficient to explain the experimental data.

For the case of bilayer graphene, within the parabolic-band approximation

one could expect s � n and m¼ constant for the cases of both resonant

and generic impurities (Katsnelson, 2007c); see Section 6.3. Straightforward

numerical simulations (Yuan, De Raedt & Katsnelson, 2010b) show that for

the case of resonant scatterers this is true only if their concentration is very

small. When the width of the impurity band exceeds 2 t?j j there is a crossover

to the behaviour typical for single-layer graphene, Eq. (11.107).
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To conclude this section, we note that one can expect different main

scattering mechanisms in different samples. Currently, it seems that for most

situations the choice is between resonant scatterers and frozen ripples, but

charge impurities can also be relevant if one protects their more or less

random distribution and prevents their clusterization.

11.4 Intrinsic mobility and transport properties

of suspended graphene flakes

In this section we will consider intrinsic mobility in graphene in relation to

electron phonon interaction (Stauber, Peres & Guinea, 2007; Morozov et al.,

2008; Mariani & von Oppen, 2008, 2010; Castro et al., 2010b; Ochoa et al.,

2011). We will follow here the last two papers.

The inelastic scattering processes should satisfy the momentum- and

energy-conservation laws. For single-phonon processes this means

e~k ¼ e~k 0 � ho~q; ð11:108Þ

where

~k
0 ¼ ~k�~q

(see Fig. 11.2(a)). The maximum momentum transfer within a given valley is

q¼ 2kF, and both electron states, ~k
�

�

�

E

and ~k
0

�

�

�

E

, should lie within a layer of the

order of T near the Fermi energy. Thus, if

T > ho2kF ð11:109Þ

2kF
k

k �q

(a)

2kF
k

k �

q

q �

(b)

Fig. 11.2. Momentum transfer processes for single-phonon (a) and double-
phonon (b) scattering processes.
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the scattering processes can be considered almost elastic. The scattering

probability is proportional to the number of thermally excited phonons

(virtual phonons do not contribute to the resistivity, see Ziman (2001)) and

is negligible at

ho2kF � T: ð11:110Þ

Up to room temperature, this excludes all optical phonons in graphene from

our consideration. It also excludes intervalley scattering processes involving

phonons with ~q � ~K (see Section 9.7) since for all branches the condition

(11.110) is satisfied at ~q ¼ ~K and T� 300K (see Fig. 9.1). Thus, we are

interested only in acoustic phonons at q� a 1 (in graphene, kF is always much

smaller than a 1). There are three branches of such phonons, longitudinal (L)

and transverse (T) in-plane phonons and flexural (F) out-of-plane phonons

with the dispersion relations (see Section 9.2)

oL
~q ¼ vLq; vL ¼

lþ 2m

r

s

; ð11:111Þ

oT
~q ¼ vTq; vT ¼

m

r

r

; ð11:112Þ

oF
~q ¼

k

r

r

q2; ð11:113Þ

where r is the mass density. Keeping in mind real parameters for graphene,

we can estimate theBloch Grüneisen temperature,TBG ¼ ho2kF , for the various

branches:

TL
BG ¼ 57 n

p
K; TT

BG ¼ 38 n
p

K; TF
BG ¼ 0:1nK; ð11:114Þ

where n is expressed in units of 1012 cm 2. At T>TBG (Eq. (11.109)) phonons

can be considered classically. One can see that for flexural phonons this is

actually the case for any practically interesting temperatures.

The electron phonon interaction in graphene originates from two sources:

the electrostatic potential (10.8) which should be substituted into Eq. (11.17)

and the vector potential (10.7) modulating the electron hopping. However,

the deformation tensor û
ab

should be considered as an operator. It is given

by Eq. (9.62), and the operators û
a
and ĥ are expressed in terms of the

corresponding phonon operators by Eq. (9.9). The resulting Hamiltonian

takes the form (Ochoa et al., 2011)
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Ĥe ph ¼
X

~k~k
0

âþ~k â~k 0 þ ĉþ~k ĉ~k 0
� �

X

u~q

V u
1;~q

(

b̂u~q þ b̂u ~q

� �þ
� �

d~k 0;~k ~q

þ
X

~q~q 0
VF

1;~q~q 0 b̂
F
~q þ b̂F~q

� �þ
� �

b̂F~q 0 þ b̂F~q 0

� �þ
� �

d~k 0;~k ~q ~q 0

)

þ
X

~k~k
0

X

u~q

V u
2;~q â

þ
~k
ĉ~k 0

(

b̂u~q þ b̂u ~q

� �þ
� �

d~k 0;~k ~q

þ
X

~q~q 0
VF

2;~q~q 0 â
þ
~k
ĉ~k 0 b̂

F
~q þ b̂F~q

� �þ
� �

b̂F~q 0 þ b̂F~q 0

� �þ
� �

d~k 0;~k ~q ~q 0 þH:c:

)

;

ð11:115Þ

where u¼L, T, subscripts 1 and 2 label the terms originating from the scalar

potential (10.8) and from the vector potential (10.7), respectively, and â~k and

ĉ~k are electron annihilation operators for sublattices A and B, respectively.

The matrix elements are

VL
1;~q ¼

g

e q; 0ð Þ iq
h

2rOoL
~q

s

;

VT
1;~q ¼ 0;

VF
1;~q~q 0 ¼

g

e ~qþ~q 0j j; 0ð Þ qq
0 cos j~q j~q 0

� � h

4rO oF
~qo

F
~q 0

q ;

VL
2;~q ¼

hvb

2a
iq exp 2ij~q

� � h

2rOoL
~q

s

;

VT
2;~q ¼

hvb

2a
q exp 2ij~q

� � h

2rOoT
~q

s

;

VF
2;~q~q 0 ¼

hvb

4a
qq 0 exp i j~q j~q 0

� �h i h

2rO oF
~qo

F
~q 0

q ;

ð11:116Þ

where O is the sample area and we take into account the screening of scalar

potential by the static dielectric function (cf. Eq. (11.87)). Note that all matrix

elements tend to zero at q! 0 as usual for the interaction with acoustic

phonons (Ziman, 2001).

One can see that the electron phonon interaction with flexural phonons

does not involve single-phonon processes but only two-phonon ones. This

follows from the structure of the deformation tensor (9.62). Single-flexural-

phonon processes do arise in deformed samples with some external profile

h0(x, y) (Castro et al., 2010b; Ochoa et al., 2011).
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The resistivity can be found using the Kubo Nakano Mori formula

(or, equivalently, by derivation and approximate solution of the Boltzmann

equation). First, we have to substitute the operator Ĥe ph instead of Ĥ
0
into

Eqs. (11.74) and (11.78). The time dependence of the phonon operators is

(Vonsovsky & Katsnelson, 1989)

b̂~q tð Þ ¼ b̂~q exp io~qt
� �

;

b̂þ~q tð Þ ¼ b̂þ~q exp io~qt
� �

:
ð11:117Þ

Next, we decouple the electron and phonon operators (this corresponds to

the lowest-order approximation in Ĥe ph) and assume that the phonons are in

equilibrium:

b̂
þ
~q b̂~q

D E

¼ N~q ¼
1

exp ho~q=T
� �

1
;

b̂~q b̂
þ
~q

D E

¼ 1þN~q:

ð11:118Þ

This means that we neglect the effects of phonon drag, which makes the

phonon system a nonequilibrium one in the presence of an electric current.

It is known (Ziman, 2001) that this effect is usually not relevant for the

resistivity but may be crucially important for the thermoelectric power.

We will not consider it here.

At T>TBG
L,T the one-phonon scattering can be considered classically, that

is, one can put

N~q � 1þN~q �
T

ho~q
ð11:119Þ

and neglect the phonon frequency in the energy-conservation law. The latter

can be done, actually, at any temperature, since e~kþ~q e~k

�

�

�

�

�

�� ho~q, except in

the case ~k?~q, which does not contribute to the integral characteristics.

In this case, we have just the same problem as for the scattering by static

disorder, Eq. (11.79), with

V eff
~k~k
0

�

�

�

�

�

�

2

� ~u~k~k 0
�

�

�

�

2
D E

¼ T

Mo~k ~k
02
: ð11:120Þ

An accurate calculation gives the result (Castro et al., 2010b)

1

t
� g2eff

v2L
þ b2h2v2

a2
1

v2L
þ 1

v2T

� �� �

kFT

2rh2v
; ð11:121Þ
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where

geff �
g

e q � kF; 0ð Þ ð11:122Þ

is the screened coupling constant. As will be shown below, this contribution is

usually much smaller than that due to two-phonon processes (Morozov et al.,

2008). This situation is highly unusual; normally, both in a three-dimensional

and in a two-dimensional electron gas, single-phonon processes are domin-

ant. It is reminiscent of the case of electron magnon scattering in half-metallic

ferromagnets, where single-magnon processes are forbidden and the tempera-

ture dependence of the resistivity is determined by two-magnon processes

(Irkhin & Katsnelson, 2002).

The energy and momentum conservation for the two-phonon scattering

processes can involve phononswith large enoughwave vectors (see Fig. 11.2(b));

thus, it is not clear a priori that even at T>TF
BG (which is, actually, always

the case) the classical picture is correct. Nevertheless, as we will see below,

this is true, and quantum-mechanical treatment of two-phonon scattering

gives approximately the same answer (11.100) as the classical consideration of

intrinsic ripples (Morozov et al., 2008).

An accurate treatment of the two-phonon processes leads to the expression

(Castro et al., 2010b)

1

t
¼ 1

32p3r2vkF

ð

1

0

dK
D Kð Þ½ �2K 2

kF
2 K 2

4

r

ð

1

0

dq
q3Nq

oq

	
ð

Kþq

K qj j

dQ
Q3 NQ þ 1
� �

oQ K 2q2
K 2 þ q2 Q2
� �2

4

s ;

ð11:123Þ

where we omit the superscript F for oq and Nq.

Here

D Kð Þ½ �2 ¼ g2

e2 K; 0ð Þ 1
K 2

4k2F

� �

þ bhv

2c

� �2

: ð11:124Þ

One can see that there is no backscattering (K¼ 2kF) for the scalar potential,

but there is backscattering for the vector potential, as there should be (see

Chapters 4 and 6).

For the case q
� kF� qT, where q

 is the ‘Ginzburg’ vector, as inEq. (11.99),

and qT is determined by the condition

oF
qT
¼ T ð11:125Þ
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the result is (Castro et al., 2010b)

1

t
¼ D

2
T2

64ph2k2vkF
ln

T

ho


� �

; ð11:126Þ

where o
 ¼ oF
q
 and D is some average value of D(K). The cut-off at q� q
 is

necessary since, as we know, the harmonic approximation is not applied to

the flexural phonons at q� q
. Equation (11.126) agrees with the estimation

(11.100). This justifies our statement that at qT� kF, which is equivalent to

T�TBG,
F ‘two-flexural-phonon’ scattering means the same as ‘scattering

by intrinsic ripples’. The case of low temperatures was studied in detail by

Mariani & von Oppen (2008, 2010) and Castro et al. (2010b). We will not

discuss it since it is not relevant for the current experimental situation.

By comparing Eqs. (11.121) and (11.126) one can estimate that the two-

phonon processes dominate at

T > Tc Kð Þ � 57n 1012 cm 2
� �

ð11:127Þ

(Castro et al., 2010b). A quantitative comparison of single-phonon and two-

phonon contributions is shown in Fig. 11.3.

The theory for the case of bilayer graphene was developed by Ochoa et al.

(2011). Both the temperature dependence and the concentration dependence

of the resistivity are the same as for the case of single-layer graphene,

accurately to within some numerical coefficients.

As has already been mentioned, for graphene on a substrate the intrinsic,

temperature-dependent, contribution to the resistivity is negligible in comparison

with the extrinsic one. The situation is dramatically different for suspended

T (K)

0
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100

100

200

200

300
r

 (
Ω

)

Fig. 11.3. Contributions to the resistivity of single-layer graphene from
flexural phonons (solid line) and from in-plane phonons (dashed line).
The electronic concentration is n¼ 1012 cm 2. (Reproduced with permission
from Castro et al., 2010b.)
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graphene flakes, for which, after annealing, the defects can be eliminated, and

the mobility at liquid helium temperature can be of the order of 105 106 cm2

V 1 s 1 (Du et al., 2008; Bolotin et al., 2008; Castro et al., 2010b; Mayorov

et al., 2011). In this case, the intrinsic mobility dominates completely.

Typical experimental data are shown in Fig. 11.4. Comparison between

theory and experiment shows (Castro et al., 2010b) that two-flexural-phonon

scattering (or, equivalently, scattering by intrinsic ripples) is probably the

main limiting factor for the suspended samples. It restricts the mobility at

room temperature to a value of the order of 104 cm2V 1 s 1 (see Eq. (11.100)).

However, the mobility can be increased by expanding the samples. External

deformation suppresses flexural phonons, making them stiffer:

ro2 ¼ kq4 þ 2 lþ mð Þq2u ð11:128Þ

(cf. Eq. (9.148)). Estimations (Castro et al., 2010b) demonstrate that even small

deformations of u� 1% may be sufficient to increase the room-temperature

mobility by an order of magnitude.

11.5 Nonlocal transport in magnetic fields

Graphene is unique, in the sense that one can pass continuously from electron

conductivity to hole conductivity without crossing an insulator region. This

means that by applying some small perturbations one can create two subsys-

tems, an electron one and a hole one, differing by some intrinsic quantum

number. The simplest case of such a perturbation is Zeeman splitting,

d ¼ 2mBB; ð11:129Þ

0
0

50 100 150 200

T (K)

0.1

0.2

–10 –5 0 5

200 K

5 K

10

10

0

20

r (kΩ)

te
m

pe
ra

tu
re

n (1010 cm–2)

1
/m

 (
V

s
m

–
2
)

(a) (b)

Fig. 11.4. (a) The resistivity of suspended single-layer graphene for T¼ 5, 10,
25, 50, 100, 150 and 200K. (b) Examples of m(T). The inset shows a scanning
electron micrograph of one of the suspended devices. (Reproduced with
permission from Castro et al., 2010b.)
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which makes the spin-up charge carriers be holes and the spin-down charge

carriers be electrons (Fig. 11.5(a)). Similar effects can be brought about by

valley polarization, but, for simplicity, we will discuss further the effects of

spin splitting. Thus, we have a very strong coupling of spin and charge

degrees of freedom: by changing the spin direction one can change the sign

of charge! This peculiarity of graphene is probably responsible for one of its

salient features, a giant nonlocal spin transport near the neutrality point

(Abanin et al., 2011).

The mechanism is the following. Suppose you create a charge current

across the sample in the presence of an external magnetic field (it does not

necessarily need to be strong enough for the system to be in the quantum Hall

regime, since the effect under consideration is actually classical). This charge

current consists of spin-up and spin-down components, which are, due to

Zeeman splitting, electron and hole ones. In the magnetic field they will be

deviated in opposite directions, leading to a spin current perpendicular to the

original charge current. The spin current can propagate without decay for

very large distances since the time of spin-flip scattering processes ts is

normally several orders of magnitude larger than the Drude relaxation

time t. Then, due to an inverse mechanism, this spin current creates a

voltage. Here we present a phenomenological theory of this effect (Abanin

et al., 2011). Previously similar physics had been discussed for the spin Hall

effect in conventional semiconductors (Abanin et al., 2009); however, for the

case of graphene the effect is really huge, for the reasons mentioned above.
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Fig. 11.5. (a) Zeeman splitting at the charge neutrality point. (b) Charge
current and spin currents in the presence of the Lorentz force. (c) The
nonlocal resistivity predicted by Eq. (11.159) for the quantum Hall regime
(main panel) and for weak magnetic fields (inset). (Reproduced with permis-
sion from Abanin et al., 2011.)
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Let us consider the geometry shown in Fig. 11.6. First, let us ignore the

spin dependence of the conductivity. The relation between the current density

and the electric field ~E ¼ ~rj is

~j ¼ ŝ ~rj; ð11:130Þ

where

ŝ ¼ sxx sxy
sxy sxx

� �

ð11:131Þ

is the conductivity tensor in the presence of a magnetic field, sxy�B.

Equation (11.131) follows from Onsager’s relations

sab Bð Þ ¼ sba Bð Þ ð11:132Þ

and the isotropy of macroscopic properties in the xy-plane for the honeycomb

lattice. Let us assume charge injection into the point x¼ 0, thus the boundary

conditions are

jy y ¼ �w

2

� �

¼ I0d xð Þ; ð11:133Þ

where w is the sample width.

Owing to the structure of the tensor (11.131), the charge conservation law

~r~j ¼¼ 0 ð11:134Þ

is equivalent to the Laplace equation

r2j x; yð Þ ¼ 0 ð11:135Þ

with a general solution

j x; yð Þ ¼
ð

1

1

dk

2p
a kð Þcosh kyð Þ þ b kð Þsinh kyð Þ½ �exp ikxð Þ: ð11:136Þ

Ispin V

x

y

I0

Fig. 11.6. A schematic representation of nonlinear transport (see the text).
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The coefficients a(k) and b(k) should be found from the boundary condition

(11.133), that is,

sxy
qj

qx
sxx

qj

qy

� ��

�

�

�

y �w=2
¼ I0d xð Þ: ð11:137Þ

The solution is straightforward and gives us the voltage distribution

V xð Þ ¼ j x;
w

2

� �

j x;
w

2

� �

¼ 2I0rxx

ð

1

1

dk

2p

exp ikxð Þ
k

tanh
kw

2

� �

; ð11:138Þ

where r̂ ¼ ŝ 1 is the resistivity tensor. On calculating the integral explicitly

we have the final answer

V xð Þ ¼ 2I0rxx
p

ln

 

coth

�

px

2w

�

!

� 4I0rxx
p

exp
p xj j
w

� �

; ð11:139Þ

where in the last equality we assume that xj j � w. Experimentally, in graphene

a rather high nonlocal resistivity

R xð Þ ¼ V xð Þ
I0

ð11:140Þ

is observed at jxj � 5w and even 10w, which cannot be explained by ‘just’

charge transport (exp( 5p)� 1.5	 10 7). It also cannot be explained by

transport via edge states since it is observed beyond the quantum Hall regime

as well.

So, let us come back to our original statement that the transport properties

in graphene can be anomalously sensitive to the spin projection. In particular,

in the situation shown in Fig. 11.5(a)

s1ð Þxy ¼ s2ð Þxy; ð11:141Þ

where subscripts 1 and 2 will be used for spin up and spin down, respectively.

Let us use, instead of Eq. (11.130), two separate Ohm laws for each spin

projection:

~ji ¼ ŝi ~rji; ð11:142Þ

where ŝi has the structure (11.131) and

ji ¼ fþ ni

Di

; ð11:143Þ
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where

Di ¼
dni

dm
ð11:144Þ

is the thermodynamic density of states (note that here m is the chemical potential,

not the mobility, as in the greatest part of this chapter!) andf is the electrostatic

potential. The second term on the right-hand side of Eq. (11.143) describes

diffusion processes in the situation in which spin-up and spin-down electron

densities ni are finite. We will assume the electroneutrality condition

n1 ¼ n2 ¼ n ð11:145Þ

and separate the total current density~j0 and the spin current density~j 0:

~j1;2 ¼~j0 �~j 0: ð11:146Þ

The equation of spin diffusion reads

~r~j 0 ¼ g n1 n2ð Þ ¼ 2gn; ð11:147Þ

where g ¼ t 1
s is the rate of spin-flip processes. Then we have the following set

of equations (together with Eq. (11.147)):

~rfþ 1

D1

~rn ¼ r̂1 ~j0 þ~j 0
� �

; ð11:148Þ

~rf 1

D2

~rn ¼ r̂2 ~j0 ~j 0
� �

; ð11:149Þ

~r~j0 ¼ 0; ð11:150Þ

where r̂i ¼ ŝ 1
i :

One can exclude ~rf from these equations and express the spin current as

~j 0 ¼ ŝ
1

D1

þ 1

D2

� �

~rnþ r̂1 r̂2ð Þ~j0
� �

; ð11:151Þ

where

ŝ ¼ r̂ 1; r̂ ¼ r̂1 þ r̂2: ð11:152Þ

On substituting Eq. (11.151) into Eq. (11.146) and taking into account

Eq. (11.137) we find at last the closed equation for the spin density:

r2n
1

l 2s
n ¼ D1D2

D1 þD2

~r r̂1 r̂2ð Þ~j0
	 


; ð11:153Þ
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where ls is the spin-diffusion length:

1

l 2s
¼ 2g

sxx

D1D2

D1 þD2

: ð11:154Þ

It follows from Eqs. (11.150) and (11.133) that j0x¼ 0 and j0y does not

depend on y:

j0y ¼ I0d xð Þ: ð11:155Þ

On substituting Eq. (11.155) into Eq. (11.153) we find a rigorous (within our

model) equation:

r2n
1

l 2s
n ¼ D1D2

D1 þD2

r̂1ð Þxy r̂2ð Þxy
� �

I0
dd xð Þ
dx

: ð11:156Þ

If we assume that w� ls we can neglect the y-dependence of n, and Eq. (11.156)

is solved immediately:

n xð Þ ¼ D1D2

2 D1 þD2ð Þ r1ð Þxy r2ð Þxy
� �h i

� I0 sgnx exp
xj j
ls

� �

: ð11:157Þ

Finally, taking into account that for the thin strip the current is assumed to be

constant in the y-direction, we find

V xð Þ ¼ w r1ð Þxy j1x xð Þ þ r2ð Þxy j2x xð Þ
h i

¼ w r1ð Þxy r2ð Þxy
h i

j 0x xð Þ ð11:158Þ

and use Eq. (11.151) for j 0x. The final answer for the nonlocal resistance

(11.140) is

R xð Þ ¼ w

2ls
sxx r1ð Þxy r2ð Þxy
h i2

exp
xj j
ls

� �

: ð11:159Þ

This formula seems to be in good agreement with the experimental

data (Abanin et al., 2011). Actually, this derivation is very general. The

only peculiarity of graphene is that near the neutrality point the difference

(r1)xy (r2)xy can be huge (see Fig. 11.5(c)).

11.6 Beyond the Boltzmann equation: localization and antilocalization

In general, the semiclassical Boltzmann equation does not suffice to describe

the transport properties of a two-dimensional electron gas because of weak

localization effects (Altshuler et al., 1980). They originate from quantum

interference effects between different trajectories passing in opposite
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directions (Fig. 11.7). The corresponding correction to the conductivity is of

the order of

ds � � e2

h
L; ð11:160Þ

where L is a ‘big logarithm’: at T¼ 0 it is ln(L/a). These interference effects

are sensitive to the magnetic field (due to the Aharonov Bohm effect), which

results in a large magnetoresistivity. Usually, ds< 0 and suppression of the

interference by the magnetic field increases the conductivity (negative magneto-

resistance). Inelastic scattering processes also destroy the interference, leading to

a cut-off of the logarithm: L! ln(eF/T). In graphene, the magnetoresistance

related to the weak localization is strongly suppressed, in comparison with the

case of a conventional electron gas. This was found by Morozov et al. (2006)

and explained by them as the effect of random pseudomagnetic fields created

by ripples (see Chapter 10). Later, these effects were observed and studied in

detail (Tikhonenko et al., 2008, 2009).

Actually, the physics of the weak localization in graphene (McCann et al.,

2006) is very complicated. First, the Berry phase p is involved in the

interference processes, which changes the sign of localization corrections:

instead of weak localization one can have weak antilocalization. Second, the

effects of trigonal warping break the time-reversal symmetry for a given valley,

Fig. 11.7. Interference between trajectories with opposite directions of elec-
tron motion.
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whereas the intervalley scattering processes restore it. Since the trajectories in

Fig. 11.7 are related by time reversal, this symmetry is very important. As a

result, depending on the types of defects in the sample, one can have either

weak localization (and negative magnetoresistance) or weak antilocalization

(and positive magnetoresistance). This prediction (McCann et al., 2006) has

been confirmed experimentally (Tikhonenko et al., 2009).

Closer to the neutrality point, the localization corrections become of the

order of the Boltzmann conductivity and the semiclassical approach fails

completely. This happens in a relatively narrow concentration range that is

quite difficult to probe experimentally. Theoretically, the situation also does

not look very clear. Earlier works were reviewed by Evers & Mirlin (2008).

Here we just mention some important, more recent papers: Bardarson et al.

(2007, 2010), Titov et al. (2010) and Ostrovsky et al. (2010). The main results

are the following.

If we do not take into account intervalley scattering (which means that all

inhomogeneities are supposed to be smooth), we never have Anderson local-

ization and the conductivity at the neutrality point remains of the order of

minimal metallic conductivity (see Chapter 3) or grows slowly with the

sample size (antilocalization). In particular, random pseudomagnetic fields

have no effect on the value of the minimal conductivity since they can be

eliminated by a gauge transformation similar to that discussed in Section 3.4

(Ostrovsky, Gornyi & Mirlin, 2008). The random mass term (Vzsz in

Eq. (11.33)) affects the value of the minimal conductivity very weakly, except

when the average mass is not zero (hVzi 6¼ 0); in that case localization is

possible (Bardarson et al., 2010). For a random scalar potential, antilocaliza-

tion seems to arise (Bardarson et al., 2007).

In the presence of intervalley scattering, Anderson localization takes place,

in the generic case. However, the most interesting case of resonant scatterers

such as vacancies or covalently bonded adatoms (see Chapter 6) requires

special consideration, due to the additional ‘chiral’ symmetry (Altland, 2002;

Evers & Mirlin, 2008; Ostrovsky et al., 2010; Titov et al., 2010). It seems

that in this case the localization radius diverges at the neutrality point and

the conductivity at n¼ 0 remains at the level of the minimal conductivity.

All these issues require further study, both theoretically and, especially,

experimentally.
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12

Spin effects and magnetism

12.1 General remarks on itinerant-electron magnetism

Up to now we have not discussed physical phenomena in graphene related

to the spin of the electron (here we mean real spin and associated with it

magnetic moment, rather than pseudospin, or the sublattice index, which

plays so essential a role throughout the book). The only exception was

Zeeman splitting in an external magnetic field but, of course, this is just the

simplest (and probably not the most interesting) of the spin effects. In this

chapter we will discuss these spin phenomena.

First, due to exchange interactions of purely quantum-mechanical origin,

various types of magnetic order can arise (Herring, 1966; Vonsovsky, 1974;

Moriya, 1985; Yosida, 1996). The situation with possible magnetic ordering

in graphene and other carbon-based materials is highly controversial (see

Section 12.2) but, due to the huge interest in the field and its potential

practical importance, this issue deserves some discussion. Before doing this,

it is worth recalling some general concepts and models of itinerant-electron

magnetism.

The simplest model used in the theory of itinerant-electron magnetism is

the so-called Hubbard model (Hubbard, 1963; Kanamori, 1963; Gutzwiller,

1963). The Hamiltonian reads

Ĥ ¼
X

ijs

tijĉ
þ
isĉjs þU

X

i

n̂i"n̂i#; ð12:1Þ

where ĉþis and ĉis are creation and annihilation operators, respectively, on site

i with the spin projection s ¼ ↑, #, tij are the hopping parameters, n̂is ¼ ĉþisĉis
are operators of electron number and U is the intra-site interaction parameter.

The main approximation in the Hubbard model is that we neglect inter-site

Coulomb interaction. The Hamiltonian (12.1) is a simplification of a more
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general ‘polar model’ (Schubin & Wonsowski, 1934). One can easily general-

ize the Hamiltonian (12.1) to the multiband case:

Ĥ ¼
X

ijsll 0
til;jl 0 ĉ

þ
ils ĉjl 0s þ

1

2

X

iss 0

l1l2l
0
1l
0
2

l1l2h jU l 01l
0
2

�

�

�

ĉþil1s ĉ
þ
il2s0

ĉil 02s0 ĉil
0
1s
; ð12:2Þ

where l is an orbital (band) quantum number.

The simplest theory of itinerant-electron magnetism was proposed by

Stoner (1936). It is based just on the mean-field (Hartree Fock) approxima-

tion. Let us make the following replacement in the Hamiltonian (12.1):

n̂i"n̂i# ! n̂i"n# þ n̂"n"; ð12:3Þ

where we assume also that the averages n̂ish i� ns are not dependent on i

(but can be spin-dependent). After the standard Fourier transformation, the

Hamiltonian (12.1) with the replacement (12.3) takes the form

Ĥ ¼
X

~k

ts ~k
� �

ĉþ~ksĉ~ks; ð12:4Þ

where

t" ~k
� �

¼ t ~k
� �

þUn#;

t# ~k
� �

¼ t ~k
� �

þUn":
ð12:5Þ

This is just a single-electron Hamiltonian, and one can easily find

ns ¼
X

~k

f~ks; ð12:6Þ

where

f~ks ¼ f ts ~k
� �� �

ð12:7Þ

is the Fermi distribution function. One can show straightforwardly that non-

trivial solutions with n↑ 6¼ n# corresponding to the ferromagnetic order exist if

a � UN eFð Þ > 1; ð12:8Þ

where

N eð Þ ¼
X

~k

d e t ~k
� �� �

ð12:9Þ
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is the density of states (per spin projection). The inequality (12.8) is called the

Stoner criterion. In the Stoner approximation (12.5) the densities of states for

spin-up and spin-down electrons are related by just a rigid shift (see Fig. 12.1(a)).

When a! 1, the saturation magnetization (in units of the Bohr magneton)

M T ¼ 0ð Þ ¼ n" T ¼ 0ð Þ n# T ¼ 0ð Þ � a 1
p

: ð12:10Þ
When the temperature increases the magnetization decreases, vanishing at the

Curie temperature TC determined by the condition

U

ð

de
qf

qe

� �

N eð Þ ¼ 1: ð12:11Þ

At a! 1,

TC � a 1
p

ð12:12Þ
in the Stoner approximation.

N (E )

EF E

(a)
N (E )

EF

E

(b)

N (E)

EF

E

(c)

Fig. 12.1. A sketch of the electronic structures for various types of itinerant-
electron ferromagnet: (a) the conventional case; (b) and (c) defect-induced
half-metallic ferromagnetism in semiconductors and in graphene, respectively.

12.1 Itinerant-electron magnetism 303

              

       



Using the identity n̂2is ¼ n̂is one can rewrite the interaction term in the

Hubbard Hamiltonian (12.1) as

U
X

i

n̂i"n̂i# ¼
U

2

X

i

n̂i" þ n̂i#
� � U

2

X

i

n̂i" n̂i#
� �2

: ð12:13Þ

The first term is just a renormalization of the chemical potential and can

therefore be neglected. The Stoner approximation is exact for some artificial

model with infinitely long-range and infinitely weak interaction:

Ĥ ¼
X

ijs

tijĉ
þ
isĉjs

U

4N0

N̂" N̂#
� �2

; ð12:14Þ

where N0 is the number of sites,

N̂s ¼
X

i

n̂is: ð12:15Þ

Importantly, two terms on the right-hand side of Eq. (12.14) commute and

(using for them the notations Ĥ1 and Ĥ2)

exp bĤ
� �

¼ exp bĤ1

� �

exp bĤ2

� �

: ð12:16Þ

Using further the Hubbard Stratonovich transformation

exp
bU

4N0

N̂" � N̂#
� �2

� �

¼ N0b

4pU

� �1=2 ð
1

1

dD exp �N0bD
2

4U
� bD

2
N̂" � N̂#
� �

� �

; ð12:17Þ

one can calculate the partition function by integrating overD by the saddle-point

method, the latter being exact in the limit N0!1. This leads exactly to

Eqs. (12.5) (12.7).

This allows us to understand the physical meaning of the Stoner criterion

(12.8). Let us remove

dN ¼ N̂"
� �

N̂#
� �� �

2
� N ð12:18Þ

electrons (N is the total number of electrons) from the states with s ¼# below
the Fermi energy to the states with s ¼ ↑ above the Fermi energy (see

Fig. 12.2). Each of these electrons increases its band energy by

de ¼ dN �D1; ð12:19Þ
where

D1 ¼
1

N eFð ÞN0

ð12:20Þ
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is the average distance between the single-particle energies near the Fermi

energy (N(eF) is the density of states per site, and the total density of states of

the whole system is N0 times larger). Thus, the increase of the total band

energy is

dEband ¼ dN de ¼ N̂"
� �

N̂#
� �� �2

4N eFð ÞN0

: ð12:21Þ

At the same time, according to Eq. (12.14), the decrease of the interaction

energy is

dEint ¼
U N̂"
� �

N̂#
� �� �2

4N0

: ð12:22Þ

The Stoner creation (12.8) is nothing but the condition that the spin polariza-

tion is energetically favourable,

dEband þ dEint < 0: ð12:23Þ

Typically, itinerant-electron ferromagnetism in 3d metals and in their alloys

and compounds is related to situations in which in the paramagnetic case

the Fermi energy eF lies close to the peak of the density of states formed by a

merging of Van Hove singularities; this is true for the prototype cases like

Fe and Ni, as well as for weak itinerant-electron ferromagnets like ZrZn2
(Irkhin, Katsnelson & Trefilov, 1992, 1993). Actually, this means some

instability, not necessarily magnetic; it can also be a structural instability

(Katsnelson, Naumov & Trefilov, 1994). This remark will be essential when

we discuss the possibility of ferromagnetism in graphene with defects (see the

next section).

In realistic models with a finite radius of inter-electron interaction the Stoner

theory of ferromagnetism is not accurate. First, as was shown by Kanamori

(1963), the bareCoulomb interactionU in the criterion (12.8) should be replaced

by the T-matrix; this statement becomes accurate in the limit of a small

concentration of electrons or holes (the gaseous approximation) (Galitskii,

1958a, 1958b). For the multiband Hubbard model (12.2) the T-matrix is deter-

mined by the equation (Edwards & Katsnelson, 2006)

EF EF

Fig. 12.2. Spontaneous spin polarization in itinerant-electron ferromagnets.
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13h jT Eð Þ 24j i ¼ 13h jU 24j i þ
X

5678

13h jU 57j i 57h jP Eð Þ 68j i 68h jT Eð Þ 24j i; ð12:24Þ

where j1i¼ ji1l1i and

57h jP Eð Þ 68j i ¼
ð

1

1

dx

ð

1

1

dy
1 f xð Þ f yð Þ

E x y
r56 xð Þr78 yð Þ; ð12:25Þ

in which r12(x) is the corresponding site- and orbital-resolved spectral density

and f(x) is the Fermi distribution function. If we have a more or less

structureless electron band of width W, P(E)� 1/W, and, in the limit of strong

interaction U�W,

T Eð Þ �W: ð12:26Þ

At the same time, N(E)� 1/W and, in general, after the replacement U!
T(eF), a� 1, in clear contradiction with the original criterion (12.8). Thus, one

can conclude that the Stoner theory overestimates the tendency towards

ferromagnetism even at temperature T¼ 0.

The situation is essentially different in the cases in which the ferromagnetism

is due to some defect-induced (e.g., by an impurity or vacancy) band in a gap,

or pseudogap, of the main band (see Figs. 12.1(b) and (c)). This situation is

relevant for graphene, as will be discussed in the next section. As was shown by

Edwards & Katsnelson (2006), in such cases the T-matrix renormalization is

less relevant, and the renormalized interaction T(eF) is close to the bare one, U.

Evenmore serious problemswith the Stoner theory arise at finite temperatures.

One can demonstrate that, in general, the main suppression of magnetization is

not due to the single-particle excitations but due to collective spin fluctuations

(Moriya, 1985). As a result, the Curie temperature is strongly overestimated

within the Stoner theory; if iron were a ‘Stoner ferromagnet’ it would have

TC� 4000K instead of the real value of TC� 1043K (Liechtenstein, Katsnel-

son & Gubanov, 1985). For the case of weak itinerant-electron ferromagnets,

a! 1, the true behaviour is (Moriya, 1985)

TC � a 1ð Þ3=4 ð12:27Þ

instead of Eq. (12.12).

At low temperatures, these spin fluctuations are nothing other than spin

waves, as in localized (Heisenberg) magnets (Fig. 12.3). Typically, the energy

of spin rotations is much smaller than that of electron hole (Stoner) excita-

tions. However, the case of ferromagnetism in a narrow defect-induced band

is special also in this sense (Edwards & Katsnelson, 2006).
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To explain this important point we need to describe first another basic

model of itinerant-electron ferromagnets, the s d exchange model (Vonsovsky,

1946; Zener, 1951a, 1951b, 1951c; Vonsovsky & Turov, 1953). Nowadays this

model is frequently called the Kondo lattice model, after the very important

work of Kondo (1964) on a magnetic impurity in a metal. I think it is fairer

historically to talk about the Kondo effect within the s d exchange (or

Vonsovsky Zener) model.

Within this model it is postulated that there exist some local magnetic

moments described by spin operators ~̂Si and that they interact locally with the

spins of conduction electrons:

Ĥ ¼
X

ijs

tijĉ
þ
isĉjs I

X

i

~̂Si~̂si; ð12:28Þ

where

~̂si ¼
1

2

X

ss 0
ĉþis~̂sss 0 ĉis 0 ð12:29Þ

and I is the s d exchange interaction constant. Despite the fact that the

Hamiltonian (12.28) does not contain the exchange interactions between the

localized spins at different sites, it arises as an indirect interaction via conduc-

tion electrons known as RKKY (Ruderman Kittel Kasuya Yosida) inter-

action (Vonsovsky, 1974). Within the lowest order of the perturbation

expansion in I, the effective Hamiltonian for localized spins is

Ĥeff ¼
X

i<j

Jij ~̂Si
~̂Sj; ð12:30Þ

where

Jij ¼ I 2wij ð12:31Þ

T
>

T
c

T
<

T
c

T
 =

 0

Fig. 12.3. The temperature evolution of ferromagnetic states in the Stoner
model (left panel), in the Heisenberg model (middle panel) and in real
itinerant-electron ferromagnets (right panel).
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and

wij ¼
1

4
T
X

en

G
0ð Þ
ij ien þ mð ÞG 0ð Þ

ji ien þ mð Þ ð12:32Þ

is the inhomogeneous susceptibility of conduction electrons. Equation (12.32)

is reminiscent of Eq. (6.135) for the interaction between adatoms and can

be derived in a similar way. The RKKY interaction (12.31) for the case of

graphene has some interesting properties, which will be discussed in the next

section.

The criterion of applicability of the expressions (12.30) and (12.31) is the

smallness of the spin polarization in the conduction-electron subsystem. For

the case of systems with complete spin polarization, such as magnetic semi-

conductors (Nagaev, 1983, 2001) and half-metallic ferromagnets (Katsnelson

et al., 2008) the situation is totally different and, instead, the double-exchange

mechanism is responsible for the ferromagnetism, with an essentially non-

Heisenberg character of exchange interactions (Auslender &Katsnelson, 1982).

In this case, typical spin-wave energies are of the order of

hosw �
n tj j
M

; ð12:33Þ

where n is the charge-carrier concentration and M is the magnetization

(Edwards, 1967; Irkhin & Katsnelson, 1985a, 1985b). This formula is valid

both for s d exchange and for Hubbard models. In the first case, M is of the

order of one and, for small enough n,

hosw � eF ð12:34Þ

since eF � n2/3 (for the three-dimensional case) and eF � n1/2 (for the two-

dimensional case). If we have a strong polarization in the defect-induced band

(see Figs. 12.1(b) and (c)) M � n should hold and

hosw � tj j � eF: ð12:35Þ

Thus, we have a very unusual situation in which the spin rotations are more

energetically expensive than the electron hole (Stoner) excitations. Also, as

was mentioned above, the T-matrix renormalization of the Stoner criterion is

not relevant here. As a result, one can conclude that, if it were possible to

create ferromagnetism in the defect-induced band of itinerant electrons, this

situation would be described by the Stoner model and one could expect much

higher Curie temperatures than for conventional magnetic semiconductors

(Edwards & Katsnelson, 2006). This is one of the strongest motivations for

the search for ferromagnetism in sp-electron systems, including graphene.
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12.2 Defect-induced magnetism in graphene

Experimentally, sp-electron magnetism, in particular in carbon-based mater-

ials, is one of the most controversial issues in modern materials science (for

reviews, see Esquinazi & Höhne, 2005; Makarova & Palacio, 2006; Yazyev,

2010). Typically, the observed experimental magnetic moment (when there the

existence of ferromagnetism has been claimed) is very small, m� 10 3 10 4
mB

per atom. Keeping in mind that magnetic iron is everywhere on this planet (dust

contains a lot of ferrimagnetic magnetite, Fe3O4) the question of possible

contamination is crucial, and it is very difficult to demonstrate convincingly that

the observed magnetism is intrinsic (Nair et al., 2011). To follow better the

possible arguments and counterarguments see, e.g., reviews of the scientific

literature on the magnetism of CaB6 (Edwards & Katsnelson, 2006) and of

polymerized fullerenes (Boukhvalov & Katsnelson, 2009c). Importantly, one

can prove (Edwards & Katsnelson, 2006) that a Curie temperature of the order

of room temperature is thermodynamically incompatiblewithm� 10 2
mB; thus,

if one observes ferromagnetic ordering with m� 10 3 10 4
mB at room tem-

perature it should be either a mistake or a strongly inhomogeneous situation,

with ferromagnetic regionswith localm> 10 2
mB in a nonmagnetic surrounding.

The first experimental study of magnetism of graphene (actually, graphene

paper, a mixture of single-layer and multilayer graphene, was studied) did not

reveal any magnetic ordering but, rather, a quite mysterious paramagnetism

(Sepioni et al., 2010).

It is natural to ask why we should discuss so controversial an issue at all.

Well, first, it is a really hot subject. More importantly, some theoretical results

seem to be reliable (actually, there are even some theorems, as will be discussed

below) and worthy of consideration. They also give us a deeper understanding

of the physics of defects (Chapter 6) and edge states (Chapter 5) in graphene.

Let us start with the case of vacancies (Section 6.5) or covalently bonded

adsorbates (Section 6.6). As we have seen, their electronic structures are quite

similar, so, in the simplest approximation, the vacancy can be considered as a

model for the hydrogen adatom or some other ‘resonant-scattering’ centre. All

these defects createmid-gap states within the graphene pseudogap (see Fig. 6.1).

As was discussed in the previous section, a peak in the density of states near the

Fermi energy can lead to amagnetic instability. This conclusion is confirmed by

straightforward density-functional calculations: the periodic array of vacancies

or hydrogen adatoms on graphene has a tendency to undergo spontaneous spin

polarization (Yazyev & Helm, 2007). The corresponding electronic structure is

shown inFig. 12.4. For large enoughdistances between the defects, themagnetic

moment per defect is close to the magnitude of the Bohr magneton, mB.
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Very recently, such magnetic moments have been observed experimentally in

graphene with vacancies and in fluorinated graphene; no magnetic ordering

has been found (Nair et al., 2011). It is associated with dangling bonds but

distributed over a rather large surrounding area. Bivacancies (Boukhvalov &

Katsnelson, 2009c) or couples of neighbouring hydrogen atoms (Boukhvalov,

Katsnelson & Lichtenstein, 2008) turn out to be nonmagnetic.

The real meaning of these results is clarified by the Lieb theorem (Lieb, 1989),

one of the few rigorous results in the theory of itinerant-electronmagnetism. The

theorem is about the ground state of the single-bandHubbardmodel (12.1) on a

bipartite lattice; the honeycomb lattice is just an example of this generic case.The

most general definitionof the bipartite lattice is that it consists of two sublattices,

A and B, such that all hopping integrals within the same sublattice are zero:

t̂AA ¼ t̂BB ¼ 0: ð12:36Þ

–3 –2 –1 0 1 2 3–3 –2 –1 0 1 2 3
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Fig. 12.4. Spin-polarized densities of states of (a) a hydrogen adatom and
(b) a vacancy in graphene; (c) and (d) show the atomic structures for the case
of a vacancy. (Reproduced with permission from Yazyev & Helm, 2007.)
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Therefore, the band part of the Hamiltonian for the bipartite lattice has the

structure

Ĥ0 ¼ 0 t̂

t̂
þ

0

� �

ð12:37Þ

with nonzero blocks only between two sublattices. Let us consider the case in

which the numbers of sites within the sublattices A and B, NA and NB, can be

different. This means that we have vacancies, and the numbers of vacancies

belonging to A and to B are, in general, not the same. Thus, t̂ is an NA	NB

matrix.

Before discussing the effects of interactions, let us consider some properties

of the single-particle spectrum of the Hamiltonian (12.37) (Inui, Trugman &

Abrahams, 1994; Kogan, 2011). We will assume, to be specific, that NB�NA.

First, there are at least NB NA linearly independent eigenfunctions with

the eigenvalue E¼ 0 and all components equal to zero on the sites of the

A sublattice. This is the obvious consequence of the structure (12.37): the

system of linear equations

t̂c ¼ 0 ð12:38Þ
has at least NB NA linearly independent solutions.

Second, for the eigenfunctions cn¼ {cn(i)} corresponding to the nonzero

eigenvalues En,

En t̂

t̂
þ

En

� �

cn ¼ 0; ð12:39Þ

there is a symmetry property,

c
�n ið Þ ¼ �cn ið Þ; ð12:40Þ

where c
�n are the eigenfunctions corresponding to En and the plus and minus

signs on the right-hand side of Eq. (12.40) correspond to the cases in which i

belongs to A and B, respectively.

Thus, the spectrum of the Hamiltonian (12.37) is symmetric (if En is an

eigenvalue, En is an eigenvalue too) and contains at least NB NA solutions

with E¼ 0. It turns out that the latter states are unstable with respect to

spontaneous spin polarization at arbitrarily small U> 0 (Lieb, 1989).

Moreover, the Lieb theorem claims that the ground state of the Hubbard

model (12.1) with U> 0, the single-particle Hamiltonian (12.37) and the

number of electrons equal to the number of sites, N¼NAþNB, is unique

(apart from the trivial (2Sþ 1)-fold degeneracy) and has the spin

S ¼ NB NA

2
: ð12:41Þ
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The theorem can be proved in two steps. First, it is shown that the ground

state is unique at any U, that is, that the states belonging to different multi-

plets with spins S and S0 6¼ S cannot both be eigenstates with the minimal

energy. The consequence is that the ground-state spin S cannot be dependent

onU. In the opposite case there will unavoidably be a crossing of the minimal

energies with a given spin, E0(S;U) and E0(S
0;U), at some U¼Uc. Second, in

the limit of large U and N¼N0 the Hubbard model (12.1) is equivalent to the

Heisenberg model with the Hamiltonian

Ĥ 0 ¼
X

i<j

2 tij
�

�

�

�

2

U
~̂si~̂sj

1

4

� �

ð12:42Þ

(see, e.g., Yosida, 1996) and for the latter the result (12.41) can be proved

quite straightforwardly and easily (Lieb & Mattis, 1962).

Importantly, the Lieb theorem does not assume the thermodynamic limit

N0!1 and is valid also for small systems. Its applications to the magnetic

properties of finite graphene fragments have been discussed by Yazyev

(2010).

It follows from the Lieb theorem that if all vacancies sit in the same

sublattice their spins are parallel in the ground state. If, oppositely, NA¼NB,

the ground state is a singlet, with S¼ 0. This means that the interactions

between vacancy-induced magnetic moments are ferromagnetic if the vacancies

belong to the same sublattice and antiferromagnetic if they belong to different

sublattices. As we see, this result is rigorous within the Hubbard model with

half-filling (N¼N0). The same conclusion for the covalently bonded adatoms

or vacancies follows from the density-functional calculations (Yazyev & Helm,

2007; Boukhvalov & Katsnelson, 2011).

It can be also proved for the RKKY interaction (12.31) within the s d

exchange model (12.28) (Kogan, 2011). By Fourier transformation of

Eq. (12.32) it can be represented as

wij ¼
1

4

ð

b

0

dtG
0ð Þ
ij tð ÞG 0ð Þ

ji tð Þ; ð12:43Þ

where b¼T 1 and

G
0ð Þ
ij tð Þ ¼ T

X

en

G
0ð Þ
ij ien þ mð Þexp ientð Þ ð12:44Þ

(see also Cheianov et al., 2009). It can be expressed in terms of the

eigenfunctions and eigenenergies of the Hamiltonian Ĥ0 (Mahan, 1990),
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G
0ð Þ
ij tð Þ ¼

X

n

c
n ið Þcn jð Þexp xntð Þ f xnð Þ y tð Þ½ �; ð12:45Þ

where xn¼En m and y(t> 0)¼ 1, y(t< 0)¼ 0.

For the case of an undoped bipartite lattice, m¼ 0, using Eq. (12.40) one finds

G
0ð Þ
ji tð Þ ¼ � G

0ð Þ
ij tð Þ

h i

; ð12:46Þ

where the minus and plus signs correspond to the cases in which i and j belong

to the same sublattice and to different sublattices, respectively. As a result,

wij ¼ �
1

4

ð

b

0

dt G
0ð Þ
ij tð Þ

�

�

�

�

�

�

2

: ð12:47Þ

On substituting Eq. (12.47) into Eqs. (12.30) and (12.31) we come, again, to

the conclusion that for the undoped (half-filled) case the exchange inter-

actions are ferromagnetic within the same sublattice and antiferromagnetic

between sites from different sublattices.

12.3 Magnetic edges

It is clear from the previous consideration that the possibility of ferromagnet-

ism in graphene-like systems is related to zero-energy modes and other mid-gap

states. As was discussed in Chapter 5 the zero-energy modes arise naturally for

a generic boundary of a terminated honeycomb lattice (see Eq. (5.70)). One can

conclude therefore that the edges should be magnetic (except in the case of

armchair edges, for which there are no mid-gap states). This was first suggested

by Fujita et al. (1996) and confirmed by numerous further calculations (e.g.,

Son, Cohen & Louie, 2006a; Yazyev & Katsnelson, 2008; for a review, see

Yazyev, 2010). If we have nanoribbons with zigzag edges, the atoms at the

opposite edges belong to different sublattices. Therefore, one can expect that

the exchange interactions between the edges are antiferromagnetic and that

the nanoribbon as a whole should have no magnetic moment. Within the

framework of the Hubbard model this just follows from the Lieb theorem.

The density-functional calculations by Son, Cohen & Louie (2006a) show

that this interaction can be switched to the ferromagnetic one by applying an

external electric field.

This result seems to be very interesting in the context of spintronics based on

the coupling between electric and magnetic degrees of freedom of conducting

materials (Žutić, Fabian & Das Sarma, 2004). Possible graphene spintronic

devices have been studied theoretically by Kim &Kim (2008) and byWimmer
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et al. (2008). As an example, one can mention a simple and elegant way to

produce a spin-polarized electric current due to a difference in shapes of the

opposite zigzag edges suggested in the latter paper (Fig. 12.5).

However, there are several problems that should be discussed carefully before

entertaining any such dreams about applications. First, the Mermin Wagner

theorem (Mermin & Wagner, 1966; Ruelle, 1999) forbids long-range order

in low-dimensional systems (such as one-dimensional graphene edges) at finite

temperatures. The range of magnetic order is limited by the temperature-

dependent spin correlation lengths xa(a¼ x, y, z) which define the decay law

of the spin correlation

ŝai ŝ
a
iþl

� �

¼ ŝai ŝ
a
i

� �

exp
l

xa

� �

: ð12:48Þ

In principle, the spin correlation length x imposes limitations on the device

sizes. In order to establish this parameter one has to determine the energetics

of spin fluctuations contributing to the breakdown of the ordered ground-

state configuration and extract the exchange parameters. This has been done

via density-functional calculations by Yazyev & Katsnelson (2008). The total

energy of the spin-spiral state (Fig. 12.6) has been calculated and fitted to the

classical Heisenberg model. The spin-wave stiffness constant D� 2100meV

Å2 has been found to be several times higher than that in iron or nickel. This

Fig. 12.5. The spin-injection profile of a graphene nanoribbon with a distorted
edge for spin injection into a region of n-doped graphene. (Reproduced with
permission from Wimmer et al., 2008.)
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confirms the general conclusion (Edwards & Katsnelson, 2006) that defect-

induced sp-electron magnetism can be characterized by very high magnon

energies (see Section 12.1).

The magnetic correlation length in the presence of spin-wave fluctuations

was obtained with the help of the one-dimensional Heisenberg-model

Hamiltonian

Ĥ ¼ a
X

i

ŝiŝiþ1 d
X

i

ŝzi ŝ
z
iþ1; ð12:49Þ

where the Heisenberg coupling a¼ 105meV was found from the fitting of the

computational results. The estimated small anisotropy parameter d/a� 10 4

originates from the weak spin orbit interaction in carbon (see the next

section). This simple model Hamiltonian has known analytic solutions

(Fisher, 1964). Figure 12.7 shows the spin correlation lengths calculated for

Fig. 12.6. The spin-spiral structure used for the calculation of the exchange
coupling constant for a graphene zigzag edge. (Reproduced with permission
from Yazyev & Katsnelson, 2008.)
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Fig. 12.7. The correlation length of magnetization vector components orthog-
onal (xz) and parallel (xx,y) to the graphene plane as a function of temperature

for weakly anisotropic (d/a¼ 10 4) and isotropic (d¼ 0) Heisenberg models.
(Reproduced with permission from Yazyev & Katsnelson, 2008.)
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our particular case. Above the crossover temperature Tx� 10K, weak

magnetic anisotropy does not play any role and the spin correlation length

x / T 1. However, below Tx the spin correlation length grows exponentially

with decreasing temperature. AtT¼ 300K the spin correlation length x� 1nm.

From a practical point of view, this means that the sizes of spintronic

devices based on the magnetic zigzag edges of graphene and operating under

normal temperature conditions are limited to several nanometres. At present,

such sizes are very difficult to achieve, which can be regarded as a pessimistic

conclusion. Nevertheless, one has to keep in mind that the spin stiffness

predicted for the magnetic graphene edges is still higher than the typical

values for traditional magnetic materials. That is, graphene outperforms

d-element-based magnetic materials, and there is room for improvement.

Achieving control over the magnetic anisotropy d/a could possible raise

the crossover temperature Tx above 300K and thus significantly extend x.

Possible approaches for reaching this goal include chemical functionalization

of the edges with heavy-element functional groups or coupling graphene to

a substrate.

Another serious problem is the possibility of reconstruction of zigzag edges

to some nonmagnetic configuration (see Section 5.6). Theoretically, the result

regarding ferromagnetism of zigzag edges at T¼ 0 looks very reliable, but

the situation with real edges of real graphene is not so clear. Probably, some

chemical protection of the edges can be used to keep the magnetic state

stable enough.

Indirect evidence of possible magnetism of graphene edges has been found

very recently by scanning tunnelling spectroscopy (STS), namely splitting of

the edge mid-gap states has been observed (Tao et al., 2011). Spin-polarized

STS should be used to prove that this is spin-splitting, but this work has not

yet been done.

12.4 Spin–orbit coupling

As we discussed above, spintronic applications due to an intrinsic magnetism

of graphene are still very speculative. At the same time, one can inject spin-

polarized current into graphene using ferromagnetic leads, e.g., cobalt, and

then manipulate with this current. There is a huge amount of experimental

activity in this field (Tombros et al., 2007, 2008; Han et al., 2009a, 2009b;

Jo et al., 2011). In this situation, the spin dynamics in graphene is determined

by spin orbit coupling, leading to various spin-relaxation processes, such as

Elliott Yafet, D’yakonov Perel, Bir Aronov Pikus and other mechanisms

(Žutić, Fabian & Das Sarma, 2004). The main idea is that, in the presence
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of spin orbit coupling, some of the scattering processes will be accompanied

by spin-flips; this is the essential feature of the simplest and most general

process, the Elliot Yafet mechanism. A rough estimation for the spin-flip

time, ts, is given by Elliot’s formula (Elliot, 1954)

1

ts
� Dgð Þ2

t
; ð12:50Þ

where Dg¼ g 2 is the contribution of the orbital moment to the conduction-

electron g-factor and t is the mean-free-path time (that is, the time taken for

the relaxation of momentum). The first experiments (Tombros et al., 2007)

have already demonstrated that ts in graphene is orders of magnitude shorter

than one would expect from a naı̈ve estimation of the spin orbit coupling

in graphene. This observation initiated a serious theoretical activity (Huertas-

Hernando, Guinea & Brataas, 2009; Castro Neto & Guinea, 2009; Jo et al.,

2011). Here we do not discuss the mechanisms of spin relaxation in graphene

but focus on the quantum-mechanical part of the problem, that is, on the

various contributions to spin orbit coupling and their effects on the electron-

energy spectrum.

Spin orbit coupling is a relativistic effect following from the Dirac equa-

tion (we mean here the real Dirac equation rather than its analogue for

graphene) as the second-order perturbation in the fine-structure constant

e2=ðhcÞ (Berestetskii, Lifshitz & Pitaevskii, 1971; Bjorken & Drell, 1964):

Ĥs-o ¼
h

4m2c2
~rV	 ~̂p
� �

�~̂s; ð12:51Þ

where ~̂p ¼ ih~r, V is the potential energy and ~̂s are the Pauli matrices acting

on the real electron spin (not on the pseudospin, as in the greatest part of the

book!). The main contribution originates from regions close to atomic nuclei

where ~rV
�

�

�

�

�

� is much larger than it is in interatomic space. As mentioned in

Chapter 1, the order of magnitude of the intra-atomic spin orbit coupling

can be estimated from the energy difference of the multiplets 3P0 and
3P1 for

the carbon atom (Radzig & Smirnov, 1985),

DEs-o � 2meV: ð12:52Þ

It is, roughly, 10 4 of the p-electron bandwidth, as it would be natural to

expect for a quantity proportional to e2= hcð Þ
� �2

.

In the representation of valent (2s2p) states of carbon the Hamiltonian

(12.51) can be represented as

Ĥs-o ¼ x~̂L �~̂s; ð12:53Þ
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where

~̂L ¼ ~̂r	 ~̂p ð12:54Þ

is the orbital moment operator.

Our further analysis follows Huertas-Hernando, Guinea & Brataas (2006)

and Yao et al. (2007). Within the basis of sp3 states of the carbon atom (see

Section 1.1) the Hamiltonian (12.53) can be rewritten as

Ĥs-o¼ 2x
X

j

ĉþjz"ĉjx# ĉþjz#ĉjx" þ iĉþjz"ĉjy# iĉþjz#ĉjy" þ iĉþjx#ĉjy#
�

iĉþjx"ĉjy" þH:c:
�

; ð12:55Þ

where we take into account only intra-atomic matrix elements ( j is the site

label) and x, y and z label the jpxi, jpyi and jpzi orbitals. Of course, s-orbitals

are not involved since ~̂L sj i ¼ 0.

Now we have to rewrite the Hamiltonian (12.55) in the representation of

s-orbitals (1.9) and p-orbitals (jpzi). Importantly, in the nearest-neighbour

approximation Ĥs-o
� �

pp
¼ 0, due to symmetry considerations. First, only the

L̂zŝz term survives, due to the mirror symmetry in the graphene plane.

Second, there is an additional vertical reflection plane along the nearest-

neighbour bonds. Under the reflection in this plane, x̂; p̂x ! x̂; p̂x and

ŷ; p̂y ! ŷ; p̂y and, therefore, L̂z ! L̂z which finishes the proof.

Thus, we have to use second-order perturbation theory and the effective

Hamiltonian of spin orbit coupling is

Ĥ
eff

s-o

� �

pp

¼ Ĥs-o
� �

ps

1

Ĥ
0ð Þ
p

Ĥ
0ð Þ
s

Ĥs-o
� �

sp
; ð12:56Þ

where Ĥ
0ð Þ
p;s are the corresponding band Hamiltonians without spin orbital

coupling. As a result, the effective Hamiltonians for the vicinities of the K and

K0 points are (Yao et al., 2007)

ĤK;K0 ~qð Þ ¼ x1 þ
�x1 hv qx � iqy

� �

hv qx � iqy
� �

�x1

� �

ð12:57Þ

instead of Eq. (1.19), where

x1 ¼ 2 xj j2 e2p e2s

9V 2
sps

; ð12:58Þ

where e2p and e2s are the atomic energy levels for 2p and 2s states and Vsps is

a matrix element of the hopping Hamiltonian for the s-block, between s and
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p states. All these energies are of the order of 10 eV; thus the effective spin

orbit coupling constant for the case of flat, defect-free graphene is x1¼ 10 3meV

(Huertas-Hernando, Guinea & Brataas, 2006; Yao et al., 2007).

A special case of spin orbit coupling is associated with the external electric

field perpendicular to the graphene plane (the Rashba effect) (Kane & Mele,

2005a; Huertas-Hernando, Guinea & Brataas, 2006; Min et al., 2006; Rashba,

2009; Zarea & Sandler, 2009; Stauber & Schliemann, 2009). The potential of

the external electric field

ĤE ¼ eEz ð12:59Þ
has nonzero matrix elements only between jsi and jpzi orbitals. In the sec-

ondary quantized form, Eq. (12.59) reads

ĤE ¼ z0eE
X

js

ĉþjzsĉjss þ ĉþjssĉjzs
� �

; ð12:60Þ

where

z0 ¼ pzh jz sj i ð12:61Þ
is of the order of the radius of the carbon atom. The effective Hamiltonian

of spin orbit coupling in the presence of the electric field, apart from

Eq. (12.56), contains the cross-term

ĤR

� �

pp
¼ ĤE

� �

ps

1

Ĥ
0ð Þ
p

Ĥ
0ð Þ
s

Ĥs-o
� �

pp
þ Ĥs-o
� �

ps

1

Ĥ
0ð Þ
p

Ĥ
0ð Þ
s

ĤE

� �

sp
ð12:62Þ

(cf. Eq. (10.70)). Taking into account this term, plus Eq. (12.57), we will find

the spin orbit 8	 8 Hamiltonian

Ĥs-o ¼ x1Ẑzt̂zŝz þ xR Ẑxt̂zŝy Ẑyŝx

� �

; ð12:63Þ

where Ẑ, t̂ and ŝ are Pauli matrices acting on the pseudospin (that is, the

sublattice index), valley index and real-spin projection, respectively. Note that

in most of the book the Pauli matrix Ẑ has been written as ŝ! The Rashba

coupling xR in Eq. (12.63) is given by (Huertas-Hernando, Guinea & Brataas,

2006; Min et al., 2006)

xR ¼
2eEz0

3Vsps

x: ð12:64Þ

For the largest values of the electric field which can be created in graphene,

E� 1Vnm 1, xR is an order of magnitude larger than x1.

There are many mechanisms that can dramatically increase the effective

spin orbit coupling in graphene. First, it is very sensitive to the curvature

12.4 Spin–orbit coupling 319

              

       



which can be associated with the ripples (Huertas-Hernando, Guinea &

Brataas, 2006). In curved graphene, there is no longer mirror symmetry in

the vertical plane along the nearest-neighbour bonds, and the effective spin

orbit coupling for the p-block does not vanish to first order in x; this leads to

Rashba-type coupling, with an effective coupling constant of the order of

xR � xaH; ð12:65Þ

where H is the mean curvature (9.77) and (9.78). For typical parameters of

the ripples this spin orbit coupling is an order of magnitude larger than the

intrinsic one, of the order of 10 2 10 1meV (Huertas-Hernando, Guinea &

Brataas, 2006).

Second, the effective spin orbit coupling can be essentially increased by

covalently bonded impurities, such as hydrogen adatoms, which change the

state of carbon atoms locally from sp2 to sp3 (Castro Neto & Guinea, 2009).

Again, this creates an effective spin orbit coupling in the p-block already in

the first order in x, making x1� x locally. This makes ‘resonant impurities’

very efficient sources of spin-flip scattering. This conclusion seems to be in

agreement with the recent experimental data (Jo et al., 2011).

Finally, let us discuss the effect of the Hamiltonian (12.63) on the electron-

energy spectrum of graphene (Kane & Mele, 2005b; Stauber & Schliemann,

2009). This Hamiltonian does not couple the valleys. For the valley K (tz¼þ1)
we have a 4	 4 matrix (in the basis A↑, B↑, A#, B#) for the total

Hamiltonian:

Ĥ ¼
x1 hv qx iqy

� �

0 0

hv qx þ iqy
� �

x1 2ixR 0

0 2ixR x1 hv qx iqy
� �

0 0 hv qx þ iqy
� �

x1

0

B

B

@

1

C

C

A

; ð12:66Þ

where we skip the constant energy shift x1 in Eq. (12.57). The equation for the

eigenenergies takes the form

det Ĥ E
� �

¼ E2 x21 h2v2q2
� �2

4x2R Eþ x1ð Þ2 ¼ 0: ð12:67Þ

At xR¼ 0, the spectrum is

E ¼ � h2v2q2 þ x21

q

; ð12:68Þ

with the gap Ds-o¼ 2jx1j. The existence of the gap does not contradict the

proof given in Chapter 1 since, in the presence of spin orbit coupling, the

time-reversal operation does not have the form (1.39) but includes the spin

reversal.
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In the opposite case, x1¼ 0, the spectrum is

E2 ¼ h2v2q2 þ 2x2R � 2xR h2v2q2 þ xR
2

q

: ð12:69Þ

This is reminiscent of the spectrum of bilayer graphene in the parabolic-band

approximation; see Chapter 1. Two bands have a gap, with the energy �2jxRj
at q¼ 0, and two others are gapless, with the parabolic spectrum at q! 0.

In general, for finite x1 and xR the gap exists at jx1j> jxRj and its value is

Ds-o ¼ 2 x1j j xRj jð Þ: ð12:70Þ

In the regime in which the gap exists the mass term has opposite signs for the

two valleys (see Eq. (12.57)). This results in a very interesting picture of the

‘quantum spin Hall effect’ (Kane & Mele, 2005a, 2005b). This phenomenon

is not relevant for real graphene, due to the very small value of the gap.

However, these two papers by Kane and Mele were very important in the

development of a novel field, namely the physics of topological insulators

(Moore, 2009; Qi & Zhang, 2010; Hasan & Kane, 2010; Qi & Zhang, 2011).

I think that this is a nice example, one of the many examples of the huge

influence of graphene on our general understanding of physics, with which to

finish this book.
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Kailasvuori, J. & Lüffe, M.C. (2010). J. Statist. Mech.: Theory Exp. P06024
Kaku, M. (1988). Introduction to Superstrings. Berlin: Springer
Kalashnikov, V. P. & Auslender, M. (1979). Fortschr. Phys. 27, 355
Kamenev, A. & Levchenko, A. (2009). Adv. Phys. 58, 197
Kanamori, J. (1963). Prog. Theor. Phys. 30, 276
Kane, C. L. & Mele, E. J. (2005a). Phys. Rev. Lett. 95, 146802
Kane, C. L. & Mele, E. J. (2005b). Phys. Rev. Lett. 95, 226801
Karssemeijer, L. J. & Fasolino, A. (2011). Surface Sci. 605, 1611
Katsnelson, M. I. (2006a). Eur. Phys. J. B 51, 157
Katsnelson, M. I. (2006b). Eur. Phys. J. B 52, 151
Katsnelson, M. I. (2006c). Phys. Rev. B 74, 201401
Katsnelson, M. I. (2007a). Mater. Today 10, 20
Katsnelson, M. I. (2007b). Eur. Phys. J. B 57, 225
Katsnelson, M. I. (2007c). Phys. Rev. B 76, 073411
Katsnelson, M. I. (2008). Europhys. Lett. 84, 37001
Katsnelson, M. I. (2010a). Europhys. Lett. 89, 17001
Katsnelson, M. I. (2010b). Phys. Rev. B 82, 205433
Katsnelson, M. I. & Geim, A.K. (2008). Phil. Trans. R. Soc. A 366, 195
Katsnelson, M. I. & Guinea, F. (2008). Phys. Rev. B 78, 075417
Katsnelson, M. I., Guinea, F. & Geim, A.K. (2009). Phys. Rev. B 79, 195426
Katsnelson, M. I., Irkhin, V.Yu., Chioncel, L., Lichtenstein, A. I. & de Groot, R.A.

(2008). Rev. Mod. Phys. 80, 315
Katsnelson, M. I., Naumov, I. I. & Trefilov, A. V. (1994). Phase Transitions 49, 143
Katsnelson, M. I. & Novoselov, K. S. (2007). Solid State Commun. 143, 3
Katsnelson, M. I., Novoselov, K. S. & Geim, A.K. (2006). Nature Phys. 2, 620
Katsnelson, M. I. & Prokhorova, M.F. (2008). Phys. Rev. B 77, 205424
Katsnelson, M. I. & Trefilov, A. V. (2002). Dynamics and Thermodynamics of Crystal

Lattices. Moscow: Atomizdat
Keldysh, L. V. (1964). Zh. Éksp. Teor. Fiz. 47, 1515
Kellendonk, J. & Schulz-Baldes, H. (2004). J. Funct. Anal. 209, 388
Kim, W.Y. & Kim, K. S. (2008). Nature Nanotech. 3, 408
Kim, K. S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P.,

Choi, J.-Y. & Hong, B.H. (2009). Nature 457, 706
Klein, O. (1929). Z. Phys. 53, 157
Kogan, E. (2011). Phys. Rev. B 84, 115119
Kohmoto, M. (1985). Ann. Phys. 160, 343

328 References

              

       



Kohmoto, M. (1989). Phys. Rev. B 39, 11943
Kohn, W. (1959). Phys. Rev. 115, 1460
Kohn, W. & Luttinger, J.M. (1957). Phys. Rev. 108, 590
Kondo, J. (1964). Prog. Theor. Phys. 32, 37
Kosevich, A.M. (1999). Theory of Crystal Lattices. New York: Wiley
Koshino, M. & Ando, T. (2006). Phys. Rev. B 73, 245403
Koshino, M. & Ando, T. (2007). Phys. Rev. B 76, 085425
Koshino, M. & Ando, T. (2010). Phys. Rev. B 81, 195431
Koshino, M. & McCann, E. (2010). Phys. Rev. B 81, 115315
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adsorption coefficient 163, 167

adsorption energy 163
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adsorption of light 161, 163

adsorption peak 170, 171

adsorption probability 162

Aharonov Bohm effect 73, 75, 76, 299
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Aharonov Bohm oscillations 73
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Anderson insulator 76
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mean square 208, 220

operator 206
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atomistic simulations 227, 237
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ballistic conductivity 97
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ballistic transport 76
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band crossing 8

band dispersion 266

band electron(s) 23

band energy 64, 304

band gap 10

band Hamiltonian 26

single band approximation 171, 278

single band problem 273

band structure 24, 272

electron band 272, 273

hole band 272

band theory 10
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BCS theory of superconductivity 165
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Berry vector potential 45

Bessel functions 30, 106, 135, 138, 142, 151, 181

bipartite lattice 6, 310, 311, 313

black hole 87

Bloch amplitude 35

Bloch electrons 39

Bloch Gruneisen temperature 288

Bloch states 23, 35, 55, 177

Bloch theorem 113, 114

Bohr magneton 303

Bohr radius 192

Boltzmann conductivity 300

Boltzmann equation 245, 266, 267, 268, 269, 271,

272, 273, 274, 290

generalized 270

linearized 274

matrix 182

semiclassical 272, 279, 280, 298

Boltzmann semiclassical theory 137, 272

s bonds 5

Born approximation 267, 272, 274, 281, 284

Bose operators 26

Bose annihilation canonical operator 206

Bose creation canonical operator 209

boundary condition(s)

antiperiodic 72

armchair 111, 115, 116

Born von Kármán 30

closed 69

generic 126, 189

infinite mass 69, 106, 116

periodic 31, 32, 67, 69, 71, 72, 152, 248

zigzag 69, 111, 115, 116, 121, 151, 189

bound state(s) 83, 140, 189

BN hexagonal 14, 176

Bragg peaks 225, 226, 227

Bravais lattice 5, 205

Brillouin zone 7, 9, 13, 22, 57, 65, 206, 238, 293

bubbles 257

bulk forces 210

bulk modulus 212, 234

C (carbon) atom 1, 2, 3, 4, 5, 12, 14, 19, 154, 155,

207, 242, 317, 318, 319, 320

CaB6, magnetism 309

capacitance 127

carbon 1, 2

carbon materials 85, 154, 237

carbon chains 237

chaotic motion 107, 108

charge 126, 127, 193, 196, 199

supercritical 83, 200, 201

charge carriers 47, 53, 63, 67, 100, 108, 134

spin up and spin down 294

charge conjugation 100

charge conservation law 295

charge density 164, 267

charge density wave 204

charge (Coulomb) impurity 188, 193

charge injection 295

charge nullification 199

charge transport 296

chemical bond(s) 5, 245

hydrogen 242

fluorine 242

carbon carbon 155, 242, 286

chemical bonding 2, 237

energy 4

chemical groups

hydrogen 125

hydroxyl 125, 156

oxygen 125

chemical potential 271, 272, 297, 304

chirality 10, 16, 23, 31, 32, 97, 100, 101, 141, 144

chiral scattering 100

chiral states 12, 28, 129, 141

chiral symmetry 300

clusterization 283, 287

Co (cobalt) 316

coarse graining 274

coarse grained approach 269

coarse grained description 268

coarse grained dynamics 275

coarse grained variables 270

cohesive energy 210

collision integral 266, 267, 271

concentration 280

charge carrier concentration 52, 140, 260, 279, 308

defect concentration 149, 268, 281

electron concentration 53, 54, 188, 203, 284, 305

hole concentration 305

conductance 67, 68, 69, 70, 72, 73, 74, 75, 121, 261

energy dependence 124

oscillations 93

quantization 124

conductance quantum 63, 76, 130

conduction band 10, 21

conduction electrons 237, 285, 307, 308

conductive state 85

conductivity 53, 63, 64, 65, 66, 67, 69, 76, 96,

167, 172, 188, 258, 277, 278, 279, 280,

293, 299, 300

ballistic 167

concentration dependence 284, 286

frequency dependent 66

minimal 63, 66, 74, 94, 95, 96, 97, 101, 138, 300

spin dependence 295

temperature dependence 280

conductivity tensor 295

conformal field theory 63

conformal mapping 70, 71, 72, 94

conical (Dirac, K) points 7, 8, 9, 10, 13, 14, 15, 17,

19, 21, 22, 27, 36, 39, 45, 65, 70, 113, 151,

155, 178, 243, 245, 260, 318

conjugated carbon carbon bond 6

contact interaction 274
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contact potential 271, 272

continuum fraction representation 277

continuum limit (elasticity theory) 245

continuum medium approximation (description)

145, 227, 243

continuum model 48, 151, 152, 227

continuum spectrum 191, 194

coordinate 65, 75, 76

coordinate operator 57

Corbino geometry 71

correlation corrections 168

correlation effects 169, 182, 202

correlation function(s) 219, 220, 221, 223, 224, 226,

227, 230, 253, 254, 284, 285

normal normal correlation function 220

correlation length 125

Coulomb blockade 127, 128

Coulomb interaction 168, 176, 182, 202, 204, 301, 305

Coulomb scattering 187

coupling constant 200, 201, 221, 291

covalent bond 2, 5

critical behaviour (point) problem 219, 221

critical exponents 223

critical phenomena theory 222, 223, 230, 231

crossed magnetic and electric fields 53, 91

crystal lattice 146, 148, 152, 205, 225, 226

crystal structure 4

Curie temperature 306, 308, 309

current 64, 67, 69, 129, 130, 166, 183, 271, 283

charge 294

electric 169, 290

normal 105, 109

spin 294, 297

current density 80, 105, 164, 169, 295, 297

spin current density 297

current operator 57, 64, 65, 66, 67, 108, 136, 142,

171, 269, 273, 275, 278

current voltage (I V) characteristic 156

cyclotron energy 28

cyclotron frequency 40

cyclotron quantum 28, 31, 58

d electron 154, 157

dangling bonds 112, 310

Debye Waller factor 225

defect(s) 12, 134, 149, 152, 280, 292, 300, 305, 309

noninteracting 159

randomly distributed 281

defect induced band 306, 308

deformation 211, 213, 216, 244, 245, 246, 255, 260,

264, 265, 293

equilibrium 216

external isotropic 233

in plane 209, 215, 216, 220, 222, 251

out of plane 221, 229, 251

shear 211, 212, 245, 246, 255

sinusoidal 247

spontaneous 257

deformation energy 216, 218

deformation tensor 210, 211, 214, 217, 224, 243,

245, 246, 252, 264, 288, 289

degeneracy probability 108

degrees of freedom 11, 269

charge 12, 294

electric 313

magnetic 313

pseudospin 164

spin degrees 294

de Haas van Alphen effect (magnetic

oscillations) 47

delta function 66

density functional 195, 208, 218, 241, 245, 249, 283

calculations 124, 126, 285, 309, 312, 313, 314

density matrix 56, 163, 168, 175, 203, 268, 269,

270, 272

density of external forces 216

density of states 9, 19, 22, 30, 47, 51, 67, 87, 97, 107,

116, 125, 146, 147, 150, 151, 152, 157, 158,

172, 173, 176, 180, 182, 193, 195, 197, 245,

257, 258, 283, 303, 305, 309

density operator 175

diamagnetic component of current operator 171

diamagnetic system 129

diamagnetism 28, 184

diamond 155, 237

diamond type lattice 4

dielectric constant 176, 185, 196, 258, 282

external 176

dielectric function 170, 176, 177, 181, 289

differential geometry 213

diffraction experiment 225, 226

diffusion coefficient 96

diffusion processes 297

diffusive transport 76

dilatation 211, 212, 245, 255, 257

Dirac cone approximation (Dirac approximation)

75, 90, 104, 108, 117, 134, 140, 171, 178, 181,

182, 183, 203, 245

Dirac equation 41, 47, 61, 67, 68, 72, 77, 90, 105,

130, 133, 135, 137, 142, 151, 185, 186, 188,

192, 199, 248, 317

Dirac fermions (electrons) 11, 12, 23, 28, 34,

37, 47, 51, 52, 63, 64, 72, 73, 84, 85,

86, 87, 88, 103, 124, 129, 139, 141,

145, 161, 163, 167, 169, 179, 196, 199,

271, 273, 279

Dirac limit 115

Dirac model 13, 58, 99, 184, 196, 198, 203

Dirac operator 70, 76

Dirac point 113, 155, 178

Dirac spinors 11, 116

Dirac theory of holes 82

disorder 11, 53, 57, 58, 64, 85, 92, 95, 116, 129, 152,

264, 268, 272

intrinsic 152

disordered systems 95, 268
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dispersion 241

linear (conical) 45, 93, 97, 141, 182

parabolic 18, 45, 141

dispersion law (relation) 13, 51, 125, 139, 141,

280, 288

doping 64, 73

electron doping 178

finite doping 73, 184

zero doping 66, 72

double well potential 131

Drude formula 279, 281

Drude peak 66

Drude relaxation time (mean free path time) 271,

281, 294

Drude weight 172

Dulong Petit value (of heat capacity) 237

d wave superconductors 273

dynamical matrix 206, 208

Dyson equation 146, 221, 230, 262

edges 108, 110, 111, 115, 116, 118, 119, 120,

124, 128, 129, 130, 131, 132, 133, 145, 215,

313, 316

armchair 113, 118, 124, 313

clamped 217

magnetic 316

zigzag 109, 116, 117, 124, 125, 126, 130, 131,

313, 314, 316

edge states 152, 296, 309

counter propagating 258

mid gap 316

effective mass 15, 29, 40

cyclotron 40

effective mass approximation 10, 26

Einstein relation (mass energy) 52

elastic constants 236

elasticity theory 208, 210, 213, 256

linear two dimensional 254

electric breakdown 35

electric dipole moment 239

electric dipole moment operator 239

electric field 11, 28, 57, 61, 86, 91, 161, 165, 166,

266, 267, 271, 295, 313, 319

constant (time independent) 35, 61, 90

time dependent 269

electric flux 37, 163

p electron 23, 155, 317

electron(s) 12, 27, 28, 34, 53, 54, 56, 65, 73, 87, 88,

92, 93, 94, 95, 97, 100, 101, 106, 109, 124,

129, 135, 142, 150, 157, 171, 182, 184, 191,

192, 203, 241, 293, 294

free electrons 41

electron beam 94

electron density

spin down 297

spin up 297

electron electron (inter electron) interactions 58,

167, 184, 195, 201, 202, 203, 204, 305

electron energy spectrum 248, 317, 320

electron excitation(s) 239, 241

electron gas 54, 64, 299

nonrelativistic 32, 179, 180, 182

three dimensional 180, 181, 291, 298

two dimensional 55, 134, 140, 141, 179, 180,

181, 291

ultrarelativistic 180

electron hole pair(s) 83, 193

electron hole puddle(s) 97

electron hole (Stoner) excitations 306, 308

electron hole symmetry 8, 9, 10, 28, 111, 196

electron hole transition(s) 204

electron motion 120, 124, 129

electron operators 65, 175, 290

electron annihilation operators 154, 165, 202,

289, 301

electron creation operators 301

electron phonon coupling 241

electron phonon excitation 240

electron phonon interaction 243, 287, 288, 289

electron photon interaction 161, 162, 163, 241

electron positron pair(s) 83, 193

electron states 7, 10, 11, 12, 16, 35, 48, 54, 76, 97,

100, 108, 120, 121, 144, 162, 192, 204

electron trajectories 73, 141

electron transport 64, 70, 76, 97, 101, 120, 121, 145,

149, 156, 227, 261

theory 264, 266, 269

electroneutrality condition 297

electronic structure 7, 9, 12, 14, 19, 20, 95, 128, 155,

156, 254, 309

electrostatic pressure 258

elementary cell 6, 195, 205, 206, 207

elliptic integral 173, 198

energy 8, 10, 12, 16, 19, 20, 21, 22, 28, 30, 39, 42, 46,

47, 62, 65, 67, 70, 75, 76, 78, 83, 85, 88, 89,

91, 95, 97, 103, 105, 111, 113, 118, 124, 126,

127, 130, 132, 136, 142, 154, 155, 159, 160,

162, 165, 180, 186, 191, 192, 195, 203, 215,

217, 241, 252, 262, 269, 272

energy band(s) 2, 15, 35, 37, 43, 126, 306, 321

band index 56

completely occupied band 178

conduction band 76

electron band 67

empty band 7, 178

hole band 67

nondegenerate bands 36

single band 7

valence band 76

energy conservation law 194, 239, 287, 290, 291

energy dependent perturbation 154

energy level(s) 1, 28, 43, 53, 104, 107, 108, 124,

132, 318

degenerate 39, 241

energy level distribution (statistics) 107, 108, 128

energy level repulsion 107, 128
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energy spectrum 8, 9, 12, 13, 15, 17, 18, 20, 21, 22,

26, 27, 28, 35, 36, 39, 40, 41, 43, 47, 48, 62,

66, 76, 101, 102, 103, 104, 105, 106, 107, 126,

128, 196

continuum 78, 83

discrete 106, 107

negative 83

energy states 53, 54, 57, 58, 64, 125, 133, 177,

192, 193

excited 34, 123

negative energy states 77

equation(s) of motion 163, 168, 206, 215, 266,

270, 275, 276

equilibrium condition (equation) 202, 212, 258

Euler constant 144

evanescent wave(s) 73, 76, 79, 98, 99, 100, 117, 142

amplitude 99

exchange correlation potential 195

exchange interaction(s) (parameters, mechanisms)

301, 307, 308, 313, 314

antiferromagnetic 312, 313

double exchange mechanism 308

ferromagnetic 312, 313

non Heisenberg character 308

exciton condensation 204

expansion coefficients 59

external screening 170

external strain tensor 233

external stress 233

F (fluorine) 156

Fabry Pérot resonances 82

Fano (anti)resonance effect 157

Fano asymmetry factor 158

Fano factor 68, 69, 70, 74

Fano resonances 191, 193

Faraday effect 171

Fe (iron) 305, 306, 314

Fe3O4 (magnetite) 309

Fermi energy 10, 47, 53, 54, 68, 133, 163, 273, 283,

287, 304, 305, 309

Fermi (distribution) function (Fermi Dirac

distribution function) 48, 57, 66, 135, 156,

165, 267, 302, 306

Fermi electron gas 96

Fermi golden rule 149, 267

Fermi level 47

Fermi liquid 204

phenomenological theory 167

Fermi operators 66

Fermionic annihilation operator(s) 56

Fermionic creation operator(s) 56

Fermi surface 200

Fermi wavelength 70

Fermi wave vector 17, 260

ferromagnetic instability 125

ferromagnetic order(ing) 125, 245, 309

ferromagnetism 305, 306, 308, 309, 313, 319

Feynman diagram(s) 221, 223, 229

fine structure constant 161, 317

first principles electronic structure calculations 160

(see also density functional calculations)

first principles GW calculations 164, 178, 181

flake(s) 70, 71, 72, 73, 75, 95, 109, 110, 208, 234

hexagonal graphene flake 257

nanoflakes 102, 104

flexural fluctuations 233

fluctuating membrane(s) 237

fluctuating membrane theory 231

fluctuation interactions 221, 222

fluorographene (CF) 152

Fock contribution 202

Foppl equations 216

forces

electric 210

external 210, 216

gravitational 210

hydrostatic pressure 211

mechanical 211

shear 211

force constant matrix 206

free energy 210, 212, 217, 219, 252

free fields approximation 220

Friedel sum rule 199

G function 232

gap (energy gap) 7, 14, 15, 17, 26, 58, 83,

91, 102, 103, 126, 174, 178, 192, 245,

246, 249, 260, 261, 263, 264, 265,

306, 320, 321

gap opening 12, 87, 103, 126, 260, 263, 264

pseudogap 306, 309

transport gap 260, 261

gapless band 321

gapless semiconductor 10, 15, 76, 90, 100

gapless state 10, 13

gapped bands 46

gaseous approximation 305

gaseous impurities 152

gauge 24, 29, 163

radial 24

gauge field 243, 254, 265

non Abelian 265

gauge invariance 64, 161, 184

gauge transformation 32, 300

Gauss Bonnet theorem 215, 218

Gauss theorem 105, 211

Gaussian curvature 214, 218, 252

Gaussian functional integrals 219

Gaussian integral 220

Gaussian orthogonal ensemble 108, 128

Gaussian unitary ensemble 108, 128

Ginzburg criterion 222

Ginzburg wave vector 291

grand canonical ensemble 47

graphane (CH) 152
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graphene 2, 5, 7, 9, 10, 11, 12, 13, 14, 19, 23, 24, 26,

27, 28, 29, 31, 32, 36, 39, 47, 48, 52, 54, 58,

59, 61, 63, 64, 65, 68, 70, 73, 76, 83, 84, 87,

91, 94, 95, 97, 101, 102, 104, 107, 108, 111,

129, 130, 137, 138, 141, 145, 149, 150, 152,

154, 155, 156, 158, 160, 161, 163, 167, 171,

176, 177, 178, 179, 181, 182, 184, 234, 237,

242, 243, 244, 246, 249, 254, 255, 261, 264,

265, 269, 282, 283, 286, 287, 288, 293, 294,

296, 298, 299, 301, 305, 306, 308, 309, 312,

316, 317, 318, 319, 321

bilayer 14, 15, 16, 17, 19, 20, 22, 26, 34, 35,

39, 46, 53, 54, 66, 67, 69, 97, 99, 100, 101,

102, 142, 144, 145, 163, 174, 204, 227, 229,

230, 236, 242, 249, 280, 281, 283, 284,

286, 292, 321

curved 320

doped 68, 178, 197, 203

exfoliated 247

freely suspended 245, 285, 292, 293

gapped 179

imperfect 134

multilayer 309

N layer 19, 20, 21, 163, 184, 242

non uniformly strained 246

on substrate 163, 279, 280, 282, 292

on hexagonal BN 14, 280

on SiO2 272, 282, 285

on SrTiO3 282

rhombohedral 42

single layer 15, 17, 19, 20, 22, 26, 34, 40, 41,

46, 47, 53, 67, 99, 100, 102, 143, 144,

163, 184, 188, 191, 193, 194, 196, 197,

199, 200, 201, 202, 204, 207, 208, 209, 210,

216, 217, 226, 227, 229, 230, 234, 235,

236, 237, 238, 239, 242, 245, 280, 281,

283, 284, 286, 292, 309

suspended 58

undoped 10, 70, 73, 76, 160, 177, 179, 196,

197, 203

graphene like systems 313

graphite 5, 7, 14, 20, 28, 156, 163, 184, 235, 236,

239, 240, 242

turbostratic 19

gravitational field(s) 86

Green’s function 33, 85, 146, 148, 151, 157, 230,

232, 233, 262

ground state 1, 27, 66, 310, 311, 312

configuration 314

probability density 60

spin 312

group velocity 80, 93, 94

Gruneisen law 218, 234

Gruneisen parameter(s) 235

electron 245

macroscopic 235

microscopic 235

gyromagnetic effects 211

half metallic ferromagnet(s) 291, 308

Hall conductivity 53, 54, 57, 133

Hamiltonian 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 23,

24, 25, 27, 28, 37, 38, 39, 40, 41, 42, 43, 45,

56, 58, 64, 65, 66, 67, 69, 77, 85, 86, 91, 103,

104, 105, 108, 111, 131, 143, 146, 148, 153,

154, 161, 162, 163, 165, 168, 171, 192, 194,

202, 206, 219, 221, 222, 261, 262, 274, 288,

307, 311, 312, 315, 317, 318, 320

band Hamiltonian 318

Dirac Hamiltonian 11, 16, 17, 64, 107, 243,

269, 270

effective Hamiltonian 243, 262, 307, 318

Heisenberg Hamiltonian 312, 315

hopping Hamiltonian 319

Hubbard Hamiltonian 301, 302, 304

multiband 302

low energy Hamiltonian 10, 11

scattering Hamiltonian 267

Schrodinger Hamiltonian 16

single electron (single particle) Hamiltonian 67,

146, 203, 302, 311

tight binding Hamiltonian 7, 13, 48, 110, 128

unperturbed Hamiltonian 269, 273

Hankel function(s) 135, 143, 151

harmonic approximation 206, 207, 208, 209, 220,

226, 227, 229, 233, 234, 292

harmonic function 75

harmonic oscillator 27, 40, 60

Hartree Fock approximation (calculation) 202

Hartree potential 195

Hartree term(s) 202

heat capacity 237

constant volume heat capacity 234

heavy ion 193

ultraheavy ions 87

Heisenberg coupling 315

Heisenberg model 312, 314

Heisenberg principle 65, 82, 191

Helfrich model of liquid membrane 218

helicity 16

Hermitian 105, 109, 110

Hermitian operator 192, 275

heterostructure 100

HgTe 10

hole(s) 12, 13, 28, 36, 65, 73, 83, 87, 93, 94, 97, 100,

203, 293, 294

hole operators 175

annihilation hole operator 165

hole (positron) states 10, 12, 16, 48, 54, 64, 72, 77,

133, 162, 192

homogeneous electron gas model 202

honeycomb lattice 5, 6, 22, 108, 109, 110, 112, 113,

118, 130, 134, 145, 148, 152, 154, 168, 171,

236, 240, 246, 295, 310, 313

Hooke’s law 211

hopping 247, 288

hopping energy 163
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hopping (cont.)

hopping integral 248, 269, 310

nearest neighbour 245

interlayer 97

nearest neighbour 14, 250

next nearest neighbour 8, 111

parameters 7, 9, 14, 19, 20, 26, 154, 243, 247, 301

Hubbard model 301, 308, 311, 312, 313

multiband 305

single band 310

hybridization 157

model 153, 155

parameter 154

hybridized states 2

hypergeometric function 186

ideal crystal(s) 63, 66

impurity(ies) 134, 156, 157, 272, 286, 306

charge 140, 282, 287

Coulomb 282

covalently bonded 320

magnetic 272, 307

randomly distributed 267, 268, 287

resonant impurities 286, 320

impurity band width 286

incident angle 88, 98

incident current 80, 136

incident light 239

incident photon 241

incident wave 73, 78, 85, 93, 94, 100, 135, 136,

142, 187

incident wave amplitude 99

incoherent electron hole excitations 182

index of operator 31, 43

index of a product of operators 41

induced charge 200

induced electric current 169

induced electron density 180, 181

inertia centre 207

infrared active phonon 240

infrared active ZO mode 240

infrared adsorption 161, 240

infrared divergence 263

infrared optics 174

infrared spectroscopy 238

interacting fermions 176

interatomic distance 23, 25, 90, 205, 216, 244, 245

interatomic potential 208

interband distance(s) 26, 125

interband transition(s) 23, 26, 35, 65, 177, 241,

271, 273

probability of 35

interference phenomena (effects) 163, 241

inter impurity interactions 159

attraction 160

repulsion 160

interlevel distance 107

intervalley Coulomb interaction 203, 204

intervalley scattering 11, 15, 90, 128

intervalley transitions (processes) 145, 152

intraband transition(s) 162

intra site interaction parameter 301

inversion 13

inversion symmetry 14, 168

Ioffe Regel limit 95

ion bombardment 286

ionic charge density 202

isospin 11

isotropic elastic medium approximation 211

itinerant electron(s) 308

itinerant electron magnetism 301, 302

ferromagnetism 305, 307

theory of 310

Kadanoff Baym nonequilibrium Green

function 268

Keldysh diagram technique 268, 270

Keller Maslov index 34

kinetic energy 25, 76, 95, 215

kinetic equation 168, 266, 268, 269, 271, 275

Klein collimation 90

Klein paradox 77, 82, 83, 84, 87, 88, 93, 94, 100,

101, 102, 103, 193

Klein tunnelling 13, 87, 95, 97, 99, 126, 129,

141, 195

Kondo effect 157, 272, 307

Kondo lattice model 307

Kondo logarithm(s) 273

Kondo resonance 272

Kramers degeneracy 104

Kramers Heisenberg formula 239

Kramers Kronig relations 148, 167

Kubo formula 56, 65, 274

Kubo Nakano Mori formula 274, 279, 290

Kummer’s equation 186

Lamé constant(s) 211, 216, 223, 236

Landau damping 182

Landau energy band(s) 62, 133, 169

zero energy Landau band 132

Landau energy level(s) 28, 30, 39, 41, 43, 46, 47, 51,

53, 54, 58, 59, 61, 62, 132, 248, 249, 257

degeneracy of 41

degenerate 30

zero energy 28, 31, 32, 54, 60, 132, 248, 249

Landau Fermi liquid theory 168

Landau gauge 29, 93

Landau indices 170

Landau orbit 169

Landau Peierls diamagnetism 184

Landau Peierls uncertainty principle 65

Landau quantization 16, 29, 30, 254, 261

Landau spectrum 28

Landau Zener breakdown 91

Landauer formula 63, 67, 68, 121, 124, 261

Laplace equation 295
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Laplace operator (Laplacian) 33, 214, 215

Laplace transform 276, 277

Larmor rotation 129

lattice constant 199, 234, 236

lattice period 20

lattice vector 5, 113

Lieb theorem 310, 311, 312, 313

Lifshitz electronic topological transition 19

light scattering 239

limit of strong interaction 306

linear response 171, 206, 267

linear response theory 56

linear screening 196

Liouville (super)operator 275

liquid membrane theory 222

localization 300

localization corrections 299, 300

localization radius 300

localized (Heisenberg) magnet(s) 306

localized spin(s) 307

localized state 189

long range carbon bond order potential

(LCBOBII) 208, 227, 235

long range order 225, 226, 314

long range potential 141

Lorentz force 53

Lorentz transformation 61, 62, 91

low dimensional system(s) 314

one dimensional 314

Macdonald function(s) 142, 143

magic angles 90, 99, 101

magnetic anisotropy 316

magnetic breakdown 23, 26, 35

magnetic correlation length 315

magnetic induction 23, 24, 26, 47

magnetic field(s) 11, 23, 26, 27, 39, 43, 45, 46,

47, 53, 58, 61, 62, 73, 74, 75, 76, 93, 128,

129, 130, 169, 170, 171, 183, 184, 248, 249,

254, 255, 257, 264, 266, 272, 278, 294,

295, 299, 301

homogeneous 32

inhomogeneous 31, 32, 41, 248

quantized 23, 47

time dependent 32

time independent (permanent, constant) 35, 58, 73

uniform 28, 34, 40, 42, 55

magnetic flux 31, 32, 33, 55, 73, 75, 76

flux quantum 55

magnetic instability 305, 309

magnetic length 23, 59, 131, 255

magnetic moment 35, 129, 301, 307, 309, 313

magnetic order (ordering) 301, 309, 314

magnetic semiconductors 308

magnetic supercell 57

magnetic susceptibility 184

magnetism 316

intrinsic 309, 316

magnetization 47, 183, 303, 306, 308

saturation magnetization 303

magneto oscillation effects 47

magnetoresistance 299

negative 299, 300

positive 300

magnetoresistivity 299

magnon energy 315

magnon scattering processes

single magnon processes 291

two magnon processes 291

many body phenomena (effects) 58, 156,

167, 201

mass density 215, 288

mass of free electron 15, 24, 157

mass term 14, 262, 321

random 300

matrix distribution function 168

Matthiessen’s rule 280

mean field 202

mean field (Hartree Fock)

approximation 302

self consistent mean field approximation

176

mean free path 95, 96, 138

mean free path time 96, 137, 279

mechanical equilibrium 205, 210

membrane 202, 217, 220, 223, 233, 258, 259,

260, 261

bilayer 229

crystalline 219, 222

deformed 217

graphene free membrane 252

graphene membrane width 261

phantom 228, 229

Mermin Wagner theorem 209, 225, 314

metals 47, 237

strongly disordered metals 64, 69

methane molecule 4

mid gap states 152, 155, 309, 313

mirror symmetry 120, 207, 318, 320

mobility 87, 101, 152, 188, 245, 279, 282, 283, 284,

285, 293, 297

concentration dependence 286

constant 286

intrinsic 280, 287, 293

extrinsic 280

temperature dependence 284, 285

molecular crystal 2

momentum 60, 64, 73, 77, 91, 191, 269

momentum conservation law 88, 162, 239,

287, 291

momentum relaxation rate 151, 279

Monte Carlo simulation(s) 226, 231, 232, 235,

237, 243

Mori’s approach 275

Mott Anderson metal insulator transition 95

Mott’s estimation of minimal conductivity 95
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nanoconstrictions 120

nanoribbons 102, 104, 116, 117, 118, 119, 120, 121,

125, 126, 313

nanotubes 69, 85, 237, 240, 243

nearest neighbour approximation 7, 111, 112, 113,

148, 160, 171, 318

nearest neighbour bonds 318, 320

nearest neighbour distance 6, 236

nearest neighbour vectors 6, 244

negative refractive index 94

nematic order 204

Neumann function(s) 135

neutrino 104

neutrino billiard model 104, 128, 130

neutrality point 96, 138, 140, 203, 204, 263, 272,

273, 279, 294, 298, 300

neutron scattering 208, 238

next nearest neighbour approximation 152

Ni (nickel) 305, 314

nonchiral state(s) 141

noncommutative geometry 58

nonequilibrium statistical mechanics 274

nonequilibrium statistical operator (NSO) method

268, 270

NSO approach 270

noninteracting fermions (electrons) 47, 56, 159,

164, 176

nonparabolic band effect 46

nonrelativistic

electrons 28, 40, 100, 120, 122, 123, 124, 140,

141, 145

motion 74

particle 191

problem 28

normal incidence 70, 77, 85, 87, 99, 100

normalization condition 3, 36, 142

normalization factor 59

nuclear magnetic moment 1

nuclear magneton 1

nuclear spin 1

Ohm’s law 296

one electron operator 56

Onsager relation(s) 66, 258, 295

optical conductivity 157, 165, 166, 167, 169, 171,

172, 173, 182

many body corrections 167

universal 167

optical response function 161

orbit(s) 5, 30, 31, 129

classical periodic orbit 34

electron orbit 29, 129

skipping orbits 129, 130

orbital magnetism 184

orbital moment 1, 12

orbital moment operator 318

orbital motion 29, 184

orbital quantum number 302

orbital susceptibility 184

oscillations (magnetic) 47, 50

oscillations of conductivity 47

oscillations of thermodynamic properties 47

temperature dependence 51

overlap integral 39, 122

p electron 5

p orbitals (p state) 1, 5, 9, 318, 319

pair creation 65

electron hole 65

particle antiparticle 65, 76

path integral 34, 38

parabolic (band) approximation 46, 97, 141,

145, 286, 321

paramagnetic component of current

operator 171

paramagnetic effect 184

paramagnetic system 129

paramagnetism 309

Pauli matrices 10, 11, 164, 317, 319

Pauli principle 163, 266

percolation 97

percolation transition 95

periodic motion 36

periodic potential 55

periodic crystal potential 24

periodic process 38

period of modulation 248

perturbation(s) 56, 57, 146, 147, 151, 165, 174, 175,

176, 180, 239, 261, 262, 267, 269, 293

perturbation series 262

perturbation theory 43, 140, 145, 157, 162, 184,

203, 204, 221, 222, 230, 262
~k�~p perturbation theory 10

second order 318

phase factor 39

phonon(s)

acoustic 207, 208, 209, 237, 241, 288, 289

acoustic flexural mode (ZA) 207, 208, 209,

234, 235

acoustic in plane mode 207

LA mode 242

branches 206, 207, 208, 288

dispersion 208, 241

flexural 210, 237, 285, 288, 289, 292, 293

frequency 234, 290

group velocity 237

in plane 224

longitudinal (L) 288

transverse (T) 288

optical 207, 240, 288

optical flexural mode (ZO) 207

optical in plane mode 207

TO mode 241, 242

out of plane 224

phonon quantum numbers 155

phonon spectra 205, 208, 238
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phonon system

equilibrium 290

nonequilibrium 290

thermally excited 288

phonon operator(s) 288, 290

phonon annihilation operator 239

phonon creation operator 239

phonon scattering process(es)

single flexural phonon processes 289

single phonon process 287, 289, 291

two phonon processes 289, 291, 292

phonon thermal conductivity theory 237

photon(s) 139, 161

physical kinetics 64

Planck constant 279

plasma oscillation spectrum 182

plasmon 182

intervalley 182

optical 182

plasmon dispersion relation 182

plasmon mode 182

p n junction 87, 92, 94, 100, 102

G point

point defects 137, 145, 146, 147, 152, 156, 157,

158, 181, 242

point group

Poisson ratio 212, 236, 237

Poisson statistics 107

Poisson summation formula 49, 74

polar liquid(s) 282

ethanol 282

water 282

polar model 302

polarization operator 175, 179, 181, 183

polarization rotation 171

polarization vector 206

photon polarization vector 239

polymerized fullerene magnetism 309

poor man’s scaling 200

positron emission 83

potential barrier 73, 75, 78, 84, 88, 89, 90, 93, 95,

97, 98, 99, 100, 102, 125, 194

parabolic 92

potential barrier height 99, 100

potential barrier width 87, 99, 100

rectangular 78, 93

transparent barrier 100

tunnel barrier 100

potential energy 25, 76, 77, 95, 103, 205, 206, 317

potential jump 69, 73, 78, 88, 90

potential well 131, 141

precession 164

probability density 266

projection operator 275, 276, 277

pseudodiffusive transport 19, 64

pseudomagnetic field 164, 246, 248, 252, 253, 255,

257, 258, 260, 261, 263, 264, 265

amplitude 247

quasi uniform 256

random 61, 249, 299, 300

uniform 254, 255, 256, 257

pseudospin 11, 12, 27, 34, 85, 97, 100, 101, 124,

301, 317, 319

density 164

direction 12, 33, 85

down state 11, 103

matrix 164

space 269

up state 11, 103

pseudospinor electron creation operator 64

pseudo Zeeman term 29

Pt (platinum) 257

quantum capacitance 48, 53

quantum dot(s) 70, 71, 126, 127, 128

quantum electrodynamics 86, 199

quantum field theory 31, 76, 199

quantum Hall effect 23, 53, 54, 56, 58, 63, 129,

130, 201, 246, 249

quantum Hall insulator 130

quantum Hall plateau 249

quantum Hall regime 254, 294, 296

spin quantum Hall effect 258, 321

valley quantum Hall effect 258

quantum interference 298, 299

quantum mechanical scattering probability 266

quantum mechanical problem 129, 145

two level 108

quantum mechanics 73

relativistic 11, 76

quantum phenomena 138

quantum relativistic effects 11

quantum relativistic particles 75, 137

quantum statistical physics 64

quantum statistics 65

quantization law 41

quasiharmonic approximation 234, 235, 236

calculations for graphene 235

quasilocalized state (level) 189, 190, 191, 195

quasiparticle(s) 101, 168

quenching (of ripples) 284, 285

quenching temperature 285

radially symmetric potential 134, 141, 185

radial momentum 194

Raman active phonon (optical mode) 240

Raman effect (scattering) 161, 239, 241

electron 239, 241

phonon 239, 257

Raman peaks 242

D peak 242

2D (G0) peak 239, 240, 241, 242

G peak 240

two phonon peak 240

Raman spectra 238, 240

Raman spectroscopy 238, 242
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random phase approximation (RPA) 176, 177, 180,

182, 281, 282

Rashba coupling 319, 320

reciprocal lattice 7

reciprocal lattice vector 7, 9, 225

reflected wave 73, 78, 85, 94, 99

amplitude 99

reflection 100

reflection coefficient 78, 79, 88

reflection current 80

reflection probability 80, 81, 121

refraction angle 94, 99

refraction wave 88

relativistic collapse 191, 193

relativistic dispersion relation 78

relativistic effects 13, 154

relativistic invariance 48, 61

relativistically invariant theories 48

relativistic particle(s) 65, 74, 77, 78, 192

relativistic regime 76

relaxation, in plane 246, 251, 264

renormalization group (RG) 200, 201, 223, 227

resistance 298

resistivity 271, 272, 274, 279, 284, 286, 288, 290, 296

concentration dependence 291

extrinsic 292

intrinsic 292

temperature dependence 249, 291, 292

resistivity tensor 296

resonance 2, 90, 140, 157, 158, 171, 191, 194, 195, 241

antiresonance 158

resonance conditions 100

resonant impurity 136, 160, 174, 242

resonant process 241

resonant state 157, 272

response functions 166, 169, 174, 183

rhombohedral stacking 20, 21

ripple(s) 32, 61, 227, 247, 249, 250, 253, 254, 264,

284, 285, 299, 319, 320

frozen ripples 246, 285, 286, 287

frozen sinusoidal ripple 249, 253

height of the ripple 247, 286

intrinsic (thermally induced) ripples 226, 227,

229, 234, 236, 253, 284, 285, 286, 291

isotropic ripple 253

radius of the ripple 247, 286

stabilization of ripples 285

rotational invariance 168, 208

Ruderman Kittel Kasuya Yosida (RKKY)

interaction 307, 308, 312

s electron 154, 157

s orbital (state) 1, 9, 318, 319

saddle point approximation 9, 34

scalar (electrostatic) potential 32, 33, 58, 59, 60, 61,

74, 85, 90, 93, 103, 132, 134, 135, 140, 149,

155, 161, 175, 180, 181, 195, 197, 250, 253,

257, 261, 264, 269, 281, 288, 289, 297, 319

inhomogeneous 265

isotropic 134

of finite radius 135

potential region 140, 141

radially symmetric 181

random 284, 300

rectangular 138

scaling 222, 224, 237

scanning tunnelling microscopy (spectroscopy)

(STM) 156, 157, 193, 257, 285, 316

scattered light (photon) 239, 241

scatterer(s) 139, 156, 267, 284

resonant scatterers 140, 151, 156, 286, 287,

300, 309

short range scatterers 58, 139, 145, 149, 188

scattering amplitude 135, 143, 152

scattering cross section 136, 137, 141, 143, 144, 283

light scattering cross section 239

scattering current 136, 187

scattering intensity 225

scattering matrix 85

scattering operator 270, 274, 278

scattering phase 135, 187, 189, 191, 200, 281

scattering potential 85, 268, 272, 273

scattering probability 288

scattering problem 261

scattering processes (mechanisms) 16, 63, 134, 141,

143, 144, 149, 225, 227, 242, 246, 258, 267,

269, 272, 283, 286, 287

elastic 242, 266, 267, 288

electron electron scattering 266

electron magnon scattering 291

electron scattering 140, 142, 253, 272, 284

inelastic 287, 299

interband scattering 269

intervalley scattering 261, 288, 300

one phonon scattering 290

potential scattering 140, 284

resonance scattering 286

s scattering 139

scattering by intrinsic ripples 292, 293

scattering by static disorder 290

scattering of ultrarelativistic particles 85

two flexural phonon scattering 292, 293

two phonon scattering 291

scattering rate 149

scattering theory 134, 141

two dimensional 134

scattering vector 226

Schrodinger equation 19, 20, 24, 26, 27, 35, 40,

41, 42, 45, 73, 77, 79, 91, 93, 99, 106,

111, 113, 117, 120, 131, 132, 134, 141,

142, 267, 268

screening 188, 199, 245, 281, 282, 289

dynamic screening 204

screening radius 200, 283

Thomas Fermi screening radius 180

static screening 180, 181
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s d exchange interaction constant 307

s d exchange model (Vonsovsky Zener model)

307, 308, 312

self consistent screening approximation (SCSA)

227, 230, 231, 234

semiclassical approximation (consideration) 43, 51,

81, 90, 91, 107, 121, 133, 157, 191, 194

semiclassical potential 124

semiclassical quantization condition 34, 38, 39, 41,

47, 57, 194

semiconductors 47, 58, 64, 102, 294

with impurities 26

zero gap semiconductors 67

shear modulus 212

short range inter electron interaction 168

short range potential 138, 143

short range scattering 145

single electron model 153

single particle excitation 306

single particle space 56

SiO2 163, 176

a Sn 10

solid state physics 87

space quantization 102

sp electron state 2

sp electron (ferro)magnetism 308, 309, 315

sp2 bonded 155

sp2 state 5, 7, 242, 320

sp3 bonded 155

sp3 centres 242

sp3 state 5, 242, 318, 320

spectral density 147, 157

orbital resolved 306

spin resolved 306

spectrum 320, 321

single particle 311

spherical harmonics 2

spin 1, 11, 12, 35, 54, 74, 77, 130, 133, 294, 301, 302,

307, 312, 317

spin correlation length 314, 315, 316

spin degeneracy 49, 54, 58, 107, 121, 148, 162, 176,

177, 200, 267, 272, 282, 283

spin density 297

spin diffusion 297

spin diffusion length 298

spin disorder 315

spin dynamics 316

spin flip (spin reversal) processes 272, 294, 297, 320

spin fluctuations (spin wave fluctuations) 306,

314, 315

spin Hall effect 294

spin index 65, 267

spin operators 307

spin orbit coupling (interaction) 2, 12, 110, 315,

317, 318, 319, 320

spin orbit coupling constant 319, 320

spinor creation operator 175

spinor wave function 27, 77, 85, 88, 98, 112, 140, 142

spin polarization 110, 157, 305, 308

spontaneous 309, 311

spin polarized electric current 191, 314, 316

spin projection 12, 31, 34, 65, 156, 202

spin relaxation 12, 317

spin rotation(s) 306, 308

spin spiral 314

spin splitting 294, 316

spin state

spin down state 272, 296, 303

spin up state 272, 296, 303

spin transport 294

spintronics 313, 316

graphene spintronics 313

spintronic devices 316

spin wave(s) 306

spin wave energy 308

spin wave stiffness constant 314, 316

standing wave(s) 116, 120, 121, 123, 124, 126

p state 7, 12, 38, 318

s state 7, 318

static limit 66

statistical mechanics 219, 220

step function 49, 177

Stokes’ theorem 36, 57

Stoner criterion 303, 304, 305, 308

Stoner ferromagnet 306

Stoner theory (model, approximation) 303, 304,

305, 306, 308

strain 233, 245, 246, 252, 257, 259, 261, 265

electrostatic 260

external 259

uniform 245

strain engineering 254, 261, 265

strain tensor 254, 255

stress 211, 212, 255, 256, 258

uniform uniaxial stress 212

stress tensor 211, 216

strong coupling regime 272

structural factor 226

static 225

structural instability 305

sublattice 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 27, 28,

35, 103, 111, 113, 114, 115, 116, 131, 148,

160, 205, 207, 243, 289, 310, 311, 312, 313

sublattice index 11, 35, 202, 301, 319

supercell 55

superheavy nucleus 191, 193, 201

superparamagnetic state 125

superstring theory 31

susceptibility of conduction electrons 308

symmetry 13, 74, 86, 111, 113, 137, 143, 149, 168,

169, 211

radial 29

tetrahedral 4

threefold 13

triangular 321

trigonal 253, 256, 257
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thermal conductivity 237

thermal expansion 234, 236

coefficient 234

linear 235

negative 235

thermal fluctuations 225

thermal bending fluctuations 97

thermodynamic density of states 48, 50, 297

thermodynamic limit 226, 312

thermodynamic potential 47, 159, 184

thermoelectric power 290

Thomas Fermi approximation (theory) 180, 197,

201, 282

Thomas Fermi contribution 181

tight binding model 7, 9, 14, 20, 113, 126, 241, 243,

246, 249

time dependent band states 35

time evolution 65

evolution operator 38

time ordering operator 38

time reversal operation (operator) 13, 106, 320

time reversal symmetry (invariance) 13, 85, 104, 108,

110, 111, 125, 128, 168, 246, 258, 267, 299, 300

T matrix 146, 147, 148, 149, 156, 159, 268, 282, 305,

306, 308

topological defects 265

disclinations 265

dislocations 265

topological insulator(s) 321

translational symmetry (invariance) 25, 113, 202,

206, 225, 262

translation vector 112, 113, 205

transmission 90, 93, 100, 101, 121, 123

adiabatic electron transmission 123

transmission coefficient 68, 72, 74, 79, 88, 99, 121,

124, 261

transmission electron microscopy 226

transmission probability 69, 81, 82, 89, 100

transmitted wave 79, 80, 81, 93, 94

transistor 102, 126

p n p (n p n) transistor 102

silicon transistor 87

single electron transistor 128

transparency 69

transport cross section 137, 187, 191, 193

transposed matrix 10

triangular inequalities 245

trigonal warping 13, 18, 22, 39, 42, 43, 45, 46, 69,

70, 97, 174, 299

tunnelling (tunnel effect) 81, 82, 95, 97, 101, 132,

156, 157, 194

tunnelling coefficient 101

tunnelling probability 95, 103

turning point(s) 34, 74, 84, 85, 132

typical electron times 35

ultrarelativistic limit 75

ultrarelativistic particles 11, 194

Umklapp processes 203

Umklapp wave vector 11

uniform rotation 208

uniform translation 208

unitary limit 145

unit cell 172

vacancy(ies) 136, 140, 150, 151, 152, 155, 156, 174,

286, 300, 306, 309, 310, 311, 312

bivacancies 310

randomly distributed 152

vacancy bands 152

vacancy induced magnetic moment 312

vacancy induced states 152

valence band 10, 21

valence (2s2p) states 317

valley(s) 10, 11, 12, 13, 14, 19, 27, 31, 40, 43,

54, 58, 74, 104, 108, 110, 115, 116, 117,

118, 119, 126, 130, 131, 132, 162, 167, 182,

203, 241, 246, 249, 258, 260, 265, 287,

300, 320, 321

valley anisotropy 125

valley degeneracy 49, 54, 58, 107, 162, 176, 200,

282, 283

valley index 11, 65, 202, 269, 319

valley polarization 110, 249, 294

valley space 11

van der Waals interaction 229

van Hove singularity(ies) 9, 19, 22, 173, 174, 182, 305

variable range hopping transport 76

variational approach (to the Boltzmann equation)

274, 279

vector potential 24, 29, 32, 60, 61, 161, 171, 182,

183, 243, 244, 245, 246, 252, 254, 260, 261,

264, 281, 288, 289, 291

constant 184

random 73, 284

time dependent 171

Veselago lens 94

voltage 102, 126, 128, 146, 294, 296

Wannier basis 24

Wannier functions 24, 25

Ward identity 223

wave function 2, 5, 10, 35, 68, 70, 79, 80, 95, 98,

100, 111, 113, 115, 116, 118, 119, 124, 133,

140, 142, 144, 151, 183, 189, 192, 260

wave length 90, 139, 230

wave vector 7, 8, 12, 13, 18, 19, 20, 22, 35, 55, 69,

70, 78, 80, 88, 93, 94, 97, 100, 103, 131, 140,

162, 175, 254, 261, 262

phonon wave vector 206, 208, 225, 291

photon wave vector 239

weak (anti)localization 244, 299, 300

weak localization 246, 298, 299, 300

Weber function 30

Wick’s theorem 224, 226, 253, 278, 279

Wigner distribution function 269
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Willmore functional 218

winding number 29, 45

Young modulus 212, 216, 221, 230,

231, 236

Zeeman energy 29, 31

Zeeman splitting 28, 293, 294, 301

Zeeman term 29

zero energy modes (states, solutions) 24, 27, 31,

32, 33, 34, 35, 40, 41, 42, 43, 53, 54, 67, 70,

73, 76, 88, 113, 114, 115, 116, 125, 248,

249, 250, 253, 313

zigzag direction 260

Zitterbewegung 63, 64, 65, 66, 269, 271

ZrZn2 305
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